Tag Archives: carbon footprint

Setting targets for community emissions – Part 5



This is part 5 of our blog post series on community emissions. The first four articles investigated the development of a community GHG inventory. This article analyses community targets for greenhouse gas emissions.

What is greenhouse gas emissions community target?

A target for a city or community relates to a desired future GHG emissions result for a local government administration boundary.

Introduction

Humans and communities are at the centre of climate change. Reducing emissions is a shared responsibility of governments, businesses and of cities and communities. Moreover, in the absence of strong national leadership, local governments need to step in and act. Setting targets enables efforts to be directed towards achieving that target, rather than letting emissions grow unchecked.

However, setting an appropriate target can be confusing. What percentage reduction should you choose? What target year shall you select? Should the target revolve around renewables or carbon emissions, or should you instead focus on tangible measures like solar PV installations in your community?

What targets are in line with science? What target will get accepted by the community? What kind of targets are other cities and communities setting themselves? Should the local government drive the target setting or shall efforts be community-driven?

Before we try to answer these questions, let’s have a look at the underlying problem first.

Rising carbon emissions and the Paris Agreement

Due to all historical and current carbon emissions, global temperatures have already increased by ~1°C from pre-industrial levels, with even higher increases being experienced on land. Atmospheric levels of carbon dioxide have risen to above 400 ppm, which exceeds the ‘safe’ level of 350 ppm. Moreover, the IPCC predicts that without additional efforts, there will be further growth in emissions due to increased economic activity and population growth.

The main driver of long-term warming is the total cumulative emissions of greenhouse gases over time. As shown by Climate Action Tracker in Figure 1, without additional efforts, human-caused carbon emissions may increase to over 100 billion tonnes annually by 2100, which is double current global emissions. The resulting increase in global temperatures could be up to 4.8°C (as per the IPCC Climate Change 2014 Synthesis Report).

However, with current climate policies around the world, global temperatures are projected to rise by about 3.2°C.

To prevent dangerous climate change by limiting global warming, close to 200 of the world’s governments signed the landmark Paris Agreement. The Paris Agreement forms the basis of science-based targets to limit global temperature increase to well below 2°C by 2050. With current pledges, and if all countries achieved their Paris Agreement targets, it could limit warming to 2.9°C.

The Climate Action Tracker’s warming projections for 2100, various policy scenarios
Figure 1: The Climate Action Tracker’s warming projections for 2100, various policy scenarios

However, to limit warming to well below 2°C, let alone 1.5°C, current Paris pledges made by countries are not enough[1]. Carbon emissions need to decline at a much steeper rate in the near future and reach net-zero by mid-century to have a 50% chance of keeping warming below 1.5°C.

Achieving net-zero by 2038 improves this chance to two thirds, but global emissions would have to fall by up to 70% relative to 2017 levels by 2030. For every year of failed action, the window to net-zero is reduced by two years[2].

So how many greenhouse gases can still be emitted? This concept is encapsulated in the term ‘carbon budget’.

What is a carbon budget?

Just like a financial budget sets a ceiling on how much money can be spent, a carbon budget is a finite amount of carbon that can be emitted into the atmosphere before warming will exceed certain temperature thresholds.

The concept of a carbon budget emerged as a scientific concept from the IPCC’s 2014 Synthesis Report on Climate Change and relates to the cumulative amount of carbon emissions permitted over a period. Given that the carbon budget is not annual, but cumulative, it means that once it is spent, carbon emissions have to be held at net zero to avoid exceeding temperature targets.

Higher emissions in earlier years mean that there can only be lower emissions later on. You can compare this concept to your own budget. If your yearly budget was $120,000, and you spent $30,000 in each of January and February, you would only have $60,000 left to spend between March and December, or $6,000 per month. Conversely, if you are careful with what you buy and only spend $5,000 every month, then your budget will last twice as long (2 years).

The carbon budget for limiting warming to 1.5°C is smaller than the carbon budget for limiting warming to 2°C.

Please have a look at the following two carbon budgets we developed for a local government client. The ‘blue budget’ shows a 2°C pathway, whereas the ‘orange budget’ shows a 1.5°C scenario.

Example of 2°C carbon budget

Example of a 2°C carbon budget
Figure 2: Example of a 2°C carbon budget for a community greenhouse gas emissions target

Example of 1.5°C carbon budget

Example of a 1.5°C carbon budget
Figure 3: Example of a 1.5°C carbon budget for a community greenhouse gas emissions target

The area of the carbon budget is much smaller in the ‘orange’ graphic. And while both carbon budgets trend towards net zero in 2050, there are much steeper reductions earlier on in the 1.5°C scenario.

How can you set a target/carbon budget based on science?

Targets are considered science-based if they are in line with the level of decarbonisation required to keep global average temperature increase well below 2°C compared to pre-industrial temperatures, as described in the Fifth Assessment Report of the IPCC. All science-based target setting methods use an underlying carbon budget.

There is no universally accepted method of how to calculate carbon budgets at the city level and many cities have worked hard at developing a fair carbon budget. As per the C40 Deadline 2020 report, the three principles that dominate the debate on the allocation of carbon budgets are:

  1. Equality, based on an understanding that human beings should have equal rights
  2. Responsibility for contributing to climate change, linked to the ‘polluter pays’ principle
  3. Capacity to contribute to solving the problem (also described as capacity to pay).

Specific considerations include the current global carbon budget[3], adjusting it to an appropriate time frame, adjusting it from carbon dioxide to carbon dioxide equivalents, and then deriving a fair and equitable national budget. Once there is a national budget, it needs to be apportioned fairly to the city by using factors such as population and potentially adjusting it based on the sector representation in the community.

A simpler method to arrive at a carbon budget that is tracking towards net-zero is to follow a science-based target-setting method by adopting a target which is proportional to the overall world’s target using the contraction approach and to scale emissions down linearly. There are two science-based temperature scenarios you can align with, a 2°C and a 1.5°C scenario. The minimum annual linear reduction rates aligned with 1.5°C and 2°C scenarios are 4.2% and 2.5%, respectively.

Example method for calculating your science-based target

The following method, which you can use as an example, shows six steps on how to set a community emissions target based on science.

Step 1: Calculate your GHG inventory

Your carbon inventory should be aligned to GPC. Please read our article on calculating community carbon footprints if you are unsure about this step.

Step 2: Project emissions

Once you have a fully developed carbon inventory, project your emissions into the future to get an idea of where your emissions will be in the absence of any abatement measures

Step 3: Decide on carbon budget allocation method

Choose an approach that is suitable for your circumstances. The simplest method is to contract to net-zero by 2050.

Step 4: Choose a pathway

You need to choose whether you want your emissions trajectory to align with a 1.5°C or a 2°C scenario.

Step 5: Choose a target year

While you are aiming to track towards net zero by mid-century, it will help to establish interim targets, based on your chosen degree scenario.

Step 6: Validate your decisions

Consult your community to get feedback.

Six steps to set a science-based community emissions target
Figure 4: Six steps to set a science-based community emissions target

What kind of targets are there?

There are two main categories of targets, top-down and bottom-up ones.

Top-down targets

With top-down goals, you set the goal first, and then determine actions to get there. Top-down targets can be informed by science (‘science-based targets’) or by a community’s aspirations. Each of these approaches effectively gives the community a carbon budget to stay within for any chosen pathway.

Externally set top-down target – science-based:

An external top-down target is informed by science. Science-based targets are aligned with either a 2°C or 1.5°C pathway and lead to net-zero emissions by 2050.

Internally set top-down target – aspirational:

Aspirational targets express the vision of a community and where it would like to be in future. They often relate to a target year earlier than 2050.

Bottom-up targets

With bottom-up targets, you analyse the carbon footprint first and then develop abatement actions. Carbon reduction actions are modelled to investigate the amount of carbon reduction that can be achieved and the cost to facilitate and fund them. Based on the level of carbon reduction that is feasible, you set a corresponding target.

Top-down and bottom-up targets can work in tandem. For instance, you can decide to set a science-based target, and then translate this target into tangible, staged and evidence-based bottom-up targets. Examples of such tangible targets are the number of solar PV installations on houses, or the rate and amount of electric vehicle take-up in a community.

Who sets a community target?

Targets can come directly from the community, or they can be driven by the local government authority. If they are driven by the local government, it is a good idea to undertake community consultation, present the facts and then get feedback on the proposed target(s).

What does a net-zero target mean?

A net-zero target means that by (and from) the target date, there must be no greenhouse gas emissions on a net basis. Within the geographic boundaries of a city, a ‘net zero city’ is defined as:

  1. Net-zero GHG emissions from stationary energy consumption such as natural gas use (scope 1)
  2. Net-zero GHG emissions from transport activities (scope 1)
  3. Net-zero GHG emissions from electricity consumption (scope 2)
  4. Net-zero GHG emissions from the treatment of waste generated within the city boundary (scopes 1 and 3)
  5. Where a city accounts for additional sectoral emissions in their GHG accounting boundary (e.g. IPPU, AFOLU), net-zero greenhouse gas emissions from all additional sectors in the GHG accounting boundary

Table 1: Definition of a net-zero target for a city

Definition of a net-zero target for a city

Once you have achieved carbon neutrality, it needs to be maintained year after year. For further information, please refer to the C40 paper, ‘Defining Carbon Neutrality For Cities And Managing Residual Emissions’.

Using carbon offsets to reach net-zero

Even after you have reduced your emissions as much as possible, there may be a residual carbon footprint. It may not be technically or economically possible to achieve zero emissions for all inventory sources, in which case you can consider carbon offsets.

As per the C40 paper Defining Carbon Neutrality for Cities, possible approaches for carbon offsets you can consider include:

  1. Developing carbon offset projects outside of the city GHG accounting boundary (including local/regional projects that may or may not generate tradeable carbon credits) and taking responsibility for managing the project for the duration of its lifetime;
  2. Investing in carbon offset projects outside of the city GHG accounting boundary (e.g. provide funding to enable a project to get underway or commit to purchasing a set quantity of future vintages, thereby providing upfront funding for credit registration costs), and
  3. Purchasing carbon offsets from outside of the city GHG accounting boundary (local, national, or globally-sourced projects that generate tradeable carbon credits) from a registered/credible/established carbon credit provider.

As with any carbon offset purchase, your carbon credits should be credible and of high quality. Criteria that your carbon offset projects should achieve are that they are real, additional, permanent, measurable, independently audited and verified, unambiguously owned and transparent.

Using Carbon Dioxide Removal and Negative Emissions Technology to reach net-zero

Carbon Dioxide Removal (CDR) means that you are removing carbon dioxide from the atmosphere in addition to what would happen anyway via the natural carbon cycle. Because you are removing carbon emissions, this is also called ‘negative emissions’, or ‘negative emissions technology’ (NET).

You can draw out excess carbon dioxide from the atmosphere by enhancing natural carbon sinks (trees and soil) or using chemical processes, such as extracting carbon dioxide from the air and storing it somewhere suitable (e.g., underground).

Negative Emission Technology (NET) is at various stages of commercial development and differs in terms of maturity, scalability, costs, risks, and trade-offs. To date, none of these technologies has been adopted at large scale.

As a side note, in IPCC modelling, all pathways that limit global warming to 1.5°C include CDR measures. If we cannot reduce emissions fast enough, global temperatures will overshoot 1.5°C, which means that we need NET to bring global temperatures back down.

A city that plans on utilising NET is Oslo. The single biggest carbon reduction measure in Oslo’s Climate and Energy Strategy is the implementation of carbon capture and storage (CCS) at its Klemetsrud waste incineration facility.

Target setting under the Global Covenant of Mayors and C40

Target setting under the Global Covenant

The Global Covenant of Mayors for Climate & Energy (GCoM) is the world’s largest alliance of cities and local governments with a shared long-term vision of promoting and supporting voluntary action to combat climate change and move to a low emission, climate-resilient future. As of October 2019, 26 local governments in Australia have joined the GCoM.

Through the GCoM, cities and local governments are voluntarily committing to fight climate change, mirroring the commitments their national governments have set to ensure the goals of the Paris Agreement are met.

Local governments committed to GCoM pledge to implement policies and undertake measures to:

  • Reduce/limit greenhouse gas emissions
  • Prepare for the impacts of climate change
  • Increase access to sustainable energy
  • Track progress toward these objectives

When you join the Global Covenant of Mayors, you need to submit a greenhouse gas emissions reduction target(s) within two years upon joining. The target boundary needs to be consistent with all emissions sources included in your GHG emissions inventory. The target year needs to be the same (or later than) the target year adopted nationally under the Paris Agreement. The national target is called the ‘Nationally Determined Contribution’ (NDC).

If you set a target beyond 2030, you also need to set an interim target. The target needs to be at least as ambitious as the unconditional components of the NDC. You are only allowed to use carbon offsets if your target’s ambition exceeds the NDC.

Target setting under C40

C40 is a network of the world’s megacities committed to addressing climate change. Cities that commit to being part of C40 need to have a plan to deliver their contribution towards the goal of constraining global temperature rise to no more than 1.5°C. In Australia, Sydney and Melbourne are members.

To remain within a 1.5°C temperature rise, average per capita emissions across C40 cities need to drop from over 5 t CO2-e per capita to around 2.9 t CO2-e per capita by 2030. Every city needs to diverge considerably from its current business-as-usual pathway and cities with a GDP over USD15,000 per capita must begin to reduce their per capita emissions immediately, which results in an immediate and steep decline of emissions.

C40 recommends that the trajectory for emission reduction follows the typology as introduced in Deadline 2020.

  • Steep Decline – Cities with a GDP per capita over $15,000 and emissions above the average for C40. Emissions need to be immediately and rapidly reduced and the city is sufficiently developed to do so.
  • Steady Decline – Cities with a GDP per capita over $15,000 but emissions lower than the average for C40. The city is sufficiently developed to immediately reduce emissions, but a less rapid rate of reduction is required than for the Steep Decline group.
  • Early Peak – Cities with GDP per capita below $15,000 and higher than average emissions per capita. An early emissions peak is required, although the city’s development status means that decline cannot be immediate.
  • Late Peak – Cities with a GDP per capita below $15,000 and lower than average emissions per capita. A slightly later emissions peak is possible.

The following table shows the current and reduced science-aligned and C40 per capita emissions for scopes 1, 2 and 3.

Table 2: Average per capita emissions figures for C40 cities in 1.5- and 2-degree trajectories

Average per capita emissions figures for C40 cities in 1.5- and 2-degree trajectories

Examples of city targets

The following list shows examples of ambitious targets for cities across five continents.

EThekwini Municipality, Africa

The eThekwini municipality includes the city of Durban, South Africa and surrounding towns. It is the first city in Africa to develop a 1.5°C climate action plan with the support of the C40 Cities Climate Leadership Group. The target is to reach a 40% reduction in emissions by 2030 and 80% reduction by 2050.

Hong Kong, Asia

In May 2019, Hong Kong achieved CDP’s top ‘A’ score for its climate strategy, among 7% of cities reporting to the CDP. Hong Kong’s targets are as follows:

  • Reduce carbon intensity by 65% to 70% by 2030 compared with the 2005 level, which is equivalent to an absolute reduction of 26% to 36%
  • Resulting in per capita emission of 3.3 to 3.8 tonnes in 2030
  • Carbon emissions to peak before 2020

The 2030 Climate Plan includes objectives, such as phasing down coal for electricity generation and replacing it with natural gas by 2030, saving energy in the built environment, focusing on rail as a low-carbon public transport backbone and encouraging active transport modes, such as walking.

The Australian Capital Territory (ACT), Australia

The ACT is a federal territory of Australia containing the Australian capital city of Canberra and some surrounding townships. The ACT’s first targets were introduced in 2010, revised in 2016 to increase ambition and again in 2018. The current targets are to reduce emissions (from 1990 levels) by:

  • 40% by 2020
  • 50-60% by 2025
  • 65-75% by 2030
  • 90-95% by 2040
  • 100% (net zero emissions) by 2045.

The ACT also set a target to peak emissions per capita by 2013. This was achieved in 2012-13 at 10.53 tonnes of CO2-e per person and has remained below this level ever since. In 2017-18, emissions were 8.09 t CO2-e per capita. The ACT’s targets were informed by considering the ACT’s share of the global carbon budget.

Oslo, Europe

Oslo has the objective to become a ‘virtually zero-emission city’. The current targets are as follows:

  • Greenhouse gas emissions should not exceed 766,000 tons of CO2-e by 2020 (applicable to all emission sectors except agriculture, aviation and shipping)
  • Reduction of greenhouse gas emissions by 95% by 2030 (compared to 1990 levels)

The second goal depends on the successful removal of emissions from a major waste incineration plant.

In 2016, Oslo introduced a climate budget, which sets a ceiling on the volume of carbon dioxide that can be emitted in the city in a given year. The climate budget is fully integrated with the financial budget of the city. The climate budgets show measures implemented or planned for Oslo to reach its climate targets and become a low-carbon city.

San Francisco, North America

In its Focus 2030: A Pathway to Net Zero Emissions, San Francisco defines the following targets:

  • Supplying 100% renewable electricity from 2030
  • 68% reduction in emissions below 1990 levels by 2030
  • 90% reduction by 2050

San Francisco identified that emission reduction must come from three primary sectors, being buildings, transportation and waste. The city also defined sub-targets for these sectors.

Transportation:

  • Shift 80% of all trips taken to walking, biking and transit by 2030.
  • Electrify 25% of private cars and trucks by 2030 and 100% by 2040.

Buildings:

  • Electrify space and water heating with high-efficiency products such as heat pumps
  • Increase building energy efficiency
  • Power buildings with 100% renewable electricity

Waste:

  • Reduce generation by 15% by 2030
  • Reduce disposal to landfill or incineration by 50% by 2030

Conclusion

Cities and communities should consider setting themselves targets in line with science. To avoid catastrophic climate change, emissions need to start falling now and reach net zero by 2050. Interim targets will help to stay under an allocated carbon budget.

Both vision and leadership are needed to enable steep cuts to our emissions, which translates into unprecedented, rapid change across the globe to limit global warming. The way electricity is generated needs to change to clean energy. The way we transport people and goods and the way we produce everything needs innovation. Land use planning plays a big part, and different economic models need to be adopted that will makes such a transformational shift possible. In the next part of this series, we will look at community carbon abatement measures in greater detail.

100% Renewables are experts in helping organisations, communities/LGAs and councils determine suitable targets, be they science-based, aspirational or bottom-up/action-based. Our community inventories align with the GPC and targets can be based on IPCC global carbon budgets. If you need help with your community inventory, please contact  Barbara or Patrick.

Footnotes

[1] For instance, Australia’s commitment under the Paris Agreement is 26-28% below 2005 levels by 2030

[2] https://www.c40.org/researches/defining-carbon-neutrality-for-cities-managing-residual-emissions

[3] The Global Carbon Budget website provides annual updates of the global carbon budget and trends.

Please share

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog. 

Calculating your GPC community inventory – Part 4

In our first blog post in this series, we introduced community emission inventories. In the previous articles, we examined categories and scopes of the Global Protocol for Community-scale Greenhouse Gas Emission Inventories (GPC) and looked at the differences between a BASIC, BASIC+ and a territorial inventory. In this article, we discuss how you can calculate your community’s emissions.

Introduction

Calculating versus measuring carbon emissions

It is possible to measure carbon emissions. Examples are monitoring greenhouse gas emissions from a coal-fired power plant or measuring the emissions from exhaust pipes in vehicles. In most cases, however, you will calculate emissions by applying a so-called ‘emissions factor’.

How are greenhouse gas emissions expressed?

Greenhouse gas emissions are expressed in tonnes of CO2-e (carbon dioxide equivalent).

When reporting under the GPC, you need to record greenhouse gas emissions of every gas, plus the tonnes of CO2-e.

What is CO2-e?

Every greenhouse gas has a different global warming potential (GWP) over 100 years. The GWPs are determined by the Intergovernmental Panel on Climate Change (IPCC). The most current assessment of GWPs was released in 2013 in IPCC’s Fifth Assessment Report (AR5).

When reporting your community inventory, you should use the latest IPCC Assessment Report or the version used by your country’s national inventory body.

Australia, as an example, uses the Fourth Assessment Report (AR4) when converting different greenhouse gases to CO2-e. Carbon dioxide is assigned a GWP of 1. Methane has a GWP of 25 and nitrous oxide has a GWP of 298. These GWPs are used to convert greenhouse gases into one single measure, CO2-e.

As an example, if 1,000 tonnes of methane emissions are emitted in your community, this would translate to 25,000 tonnes of CO2-e.

Activity data and emission factors

Calculations are based on converting data that you have available into emissions using a ‘conversion’ or an ‘emissions factor’.

GHG emissions = Activity data x emissions factor

Activity data measures a level of activity that leads to greenhouse gas emissions. Examples of activity data are:

  • Electricity consumption
  • Natural gas consumption
  • Litres of fuel used in a car
  • Tonnes of waste sent to landfill
  • Number of sheep

An emissions factor converts your activity data into a mass of greenhouse gas emissions.

Example of calculating emissions associated with electricity consumption

Say your city consumed 1,000 MWh of electricity. The emissions associated with your electricity use differ depending on how this electricity is generated. If mostly fossil fuels like coal are used to produce electricity, then this will produce more emissions compared to renewables.

Let’s take a look at the emissions resulting from the same electricity consumption in three different English-speaking countries by applying the relevant emission factors.

Figure 1: GHG emissions of different countries with the same underlying electricity consumption

The emissions for Australia are higher than for the USA and the UK with the same underlying consumption due to most of the electricity being produced from fossil fuel sources.

Note on emission factors:

The factors for Australia and the USA are averages across all regions for 2019.

Factor sources:

Selecting an appropriate calculation methodology

Selecting a calculation methodology depends on several things:

  • The purpose of your GHG inventory. Considerations here include whether you are reporting internally or to your community, or whether you are participating in programs like the C40, or the Global Covenant of Mayors.
  • Availability of data. Some data may be easily obtainable, whereas, with others, you may need more comprehensive data gathering methods.
  • Consistency with your country’s national inventory reporting programs. You may need to select a specific calculation methodology to fit in with how your country reports its national inventory.

No matter what calculation method you choose, you need to make sure to document the calculation method you have used.

Data collection

A big (and the most time consuming) part in calculating a community’s inventory is data collection.

If you are lucky, you have existing data for your selected inventory boundary and the reporting level you have selected. If not, you will have to generate new data (which involves surveying your community) or adapt existing data.

Examples of data sources

The following shows a list of possible data sources you could use (as described in the GPC):

  • Government departments
  • Statistics agencies
  • Your country’s national GHG inventory report
  • Universities and research institutes
  • Scientific and technical articles in environmental books, journals and reports
  • Sector experts/stakeholder organisations

Identifying emission factors

Your first choice of emission factors should be local, regional, or national factors published by the Government. If these are not available, you can use IPCC default factors or data from the Emission Factor Database, or other standard values from international bodies that reflect national circumstances. Table 2.2 of the 2006 IPCC Guidelines provides a comprehensive guide to identifying potential sources of emission factors.



Quality assessment of activity data and emissions factors

Ideally, you would want the most accurate activity data and emissions factors you can get. However, this will not always be possible, and sometimes, you need to trade-off between accuracy and completeness of your inventory. Generally speaking, you would prefer your data and emissions factors to be:

  • Reliable
  • Peer-reviewed
  • Reputable
  • Robust
  • Recent
  • Specific to your area
  • Publicly available

To be compliant with the GPC, you need to evaluate both the quality of your activity data as well as that of your emission factors. The quality can be low, medium or high as shown in the graphic below.

Figure 2: Assessing the quality of activity data and emissions factors

How to calculate the most common emissions in a GPC inventory

The following section provides more guidance on how you can calculate the most common emission sources in your GPC inventory.

Calculating emissions from stationary energy consumption

Examples of stationary energy consumption are electricity and natural gas use.

Step 1 – Gather activity data

Obtain activity data for each fuel type, ideally disaggregated by sub-sector (e.g. residential buildings, commercial buildings, etc.). Ideally, you would get this data from the network provider or utility. If this is not possible, you can survey your community, or model the energy consumption by determining energy intensities by facility type.

If you cannot disaggregate the data into sub-sectors, you can apportion the total consumption information to each sub-sector or building type. If data is not available for your city, you can use regional or national consumption data scaled down to your population size.

Step 2 – Calculate emissions:

Multiply the fuel/electricity consumption with an appropriate emissions factor.

Calculating emissions from transportation

Emissions from transportation can be difficult to calculate. Transportation consists of the sub-sectors on-road, railways, water transport, aviation and off-road transportation. In this article, we are focusing on on-road transport. Please refer to the GPC for guidance in calculating other transportation-related emissions.

When it comes to on-road transportation, there is a large variation in available data, and the GPC does not prescribe a specific method. Most cities start with a top-down method that uses fuel consumption as a proxy for travel behaviour. It’s fairly easy to calculate emissions this way and does not require a high level of technical capacity, but it makes it difficult to track emission reduction actions.

With more accurate or relevant information available over time, cities tend to change their method to a more detailed, bottom-up approach. Bottom-up methods use detailed activity data, such as vehicle km travelled per mode and vehicle fuel intensity.

Step 1 – Choose calculation method:

The GPC encourages cities to calculate emissions based on four common methods and recommends the induced activity approach.

  1. Fuel sales method (top-down)
  2. Induced activity method (bottom-up) – transportation emissions induced by the city, including trips that begin, end, or are fully contained within the city (usually excluding pass-through trips).
  3. Geographic or territorial method (bottom-up) – emissions from transportation activity within city boundaries
  4. Resident activity method (bottom-up) – emissions from transportation activity undertaken by city residents

Step 2 – Gather activity data:

If you have chosen the fuel sales method, you can obtain data from fuel dispensing facilities or tax receipts. Where this is not possible, data may be available at a regional scale, which can be downscaled based on vehicle ownership data.

If you have chosen a bottom-up method, you need to obtain data from models or surveys.

Step 3 – Calculate emissions:

Multiply the fuel/electricity (electric vehicles) consumption with an appropriate emissions factor.

Calculating emissions from waste

Here, you calculate waste that is not being recycled, and ends up in landfill, biological treatment or incineration. Biological treatment refers to composting and anaerobic digestion of organic waste.

Step 1 – Choose calculation method:

Choose the calculation method

  1. First order of decay (FOD) – emissions are calculated based on actual emissions during the calculation year
  2. Methane commitment (MC) – emissions are calculated based on waste disposed in the calculation year

Step 2 – Gather activity data:

Obtain activity data from waste collection services and weigh-ins at the landfill site. Alternatively, you can multiply the per capita waste generation rate by the population. If you have chosen the FOD method, you will also need to collect historical waste data.

Step 3 – Calculate emissions:

Depending on the method chosen, calculate emissions based on guidance given in the GPC.

Calculating emissions from wastewater

Step 1 – Gather activity data:

Obtain the quantity of wastewater generated in your community, how it is treated (aerobically – in presence of oxygen, or anaerobically – in absence of oxygen), the wastewater’s source and its organic content.

Step 2 – Calculate emissions:

Calculate emissions for methane and nitrous oxide based on guidance given in the GPC.

Conclusion

It is challenging to develop carbon footprints that are in alignment with the GPC. Sometimes, it is easier to get the help of an expert who can guide you through the process. Here at 100% Renewables, we are certified City Climate Planners, proving our experience in community-level GHG emissions inventory accounting.

If you need help with developing community emissions inventories or pathways for emission reduction, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Reporting your GPC inventory – BASIC versus BASIC+ – Part 3

In our first blog post in this series, we introduced community emission inventories. In the previous article, we examined categories and scopes of the Global Protocol for Community-scale Greenhouse Gas Emission Inventories (GPC) in greater detail.  In this blog post, we will look at the differences between a BASIC, BASIC+ and a territorial inventory.

We recommend that you read our introductory article first to get a basic understanding of GPC inventories.

Reporting emissions under the GPC

As per our previous article, emissions have to be classified by scope and (sub)sector, but there are two different ways you report these emissions.

  1. Scopes framework – territorial accounting
  2. City-induced framework

These two frameworks sum and report carbon emissions differently.

Under the territorial, or ‘scopes’ framework, you report all carbon emissions occurring within the city boundary (scope 1 emissions sources). Emission sources outside the city boundary are classified as scope 2 and scope 3.

However, if you only report on scope 1 emissions, you leave out the details of other emission sources that a city/LGA is responsible for. Therefore, the GPC also requires reporting under the ‘city-induced’ framework. Under this framework, carbon emissions due to activities taking place within a city are calculated, which takes selected scope 1, 2 and 3 emission sources into account.

Figure 1: The territorial and city-induced ways of reporting a GPC inventory

All emissions a city is responsible for are counted, no matter whether they occur within or outside the city. There are two options to report under the ‘city-induced’ framework, BASIC and BASIC+. The BASIC level allows you to report on standard emission sources in a city.

The BASIC+ level covers more emission sources. This means that a community has to report the most common scope 1, 2 and 3 emission sources. Cities should try and report as many emission sources as possible – this is usually constrained by what data sources are available.

Territorial reporting

One of the advantages of using the GPC in compiling your city’s or LGA’s carbon inventory is that it allows you to add all discrete inventories up to a national level. The way this works is that the boundaries of each inventory must not overlap and that you only count scope 1 emission sources.

If you only total scope 1 (‘territorial’) emissions, then you are reporting emissions occurring within the geographic boundary of a city, or LGA. This way of reporting community emissions is consistent with national-level greenhouse gas reporting.

When you are reporting under the territorial reporting level, you need to include the following scope 1 emission sources:

  • Energy (both stationary and in-boundary transport)
  • Waste and wastewater
  • IPPU (only under BASIC+)
  • AFOLU (only under BASIC+)

Emissions from grid-supplied energy are calculated at the point of energy generation. This means that you are reporting energy generation supplied to the grid within your city boundaries under scope 1, but you would not include this source in your BASIC/BASIC+ totals.

Emissions from waste are calculated at the point of waste disposed. This means that waste imported from outside the city but treated inside the city will be part of the scope 1 total under the territorial approach.

BASIC reporting

The BASIC level of reporting covers scope 1 and scope 2 emission sources from energy (both for stationary as well as transport purposes), as well as scope 1 and scope 3 emissions from waste.

If you are reporting under the BASIC reporting level, you need to include the following emission sources:

  • Energy (both stationary and transport), scopes 1 and 2
  • Waste and wastewater, scopes 1 and 3

You will need to report all carbon emissions from stationary energy sources such as natural gas consumption, in scope 1, and those from the use of grid-supplied electricity in scope 2.

You will also need to report fugitive emissions associated with coal, oil and natural gas systems under scope 1.

You need to report all carbon emissions from transportation fuels occurring within the city boundary in scope 1, and carbon emissions from grid-supplied electricity used for transportation within the city boundary in scope 2 (e.g., electric vehicle charging).

Emissions from grid-supplied energy are calculated at the point of energy consumption and emissions from waste at the point of waste generation. This means that under the city-induced framework, carbon emissions from the disposal or treatment of waste generated within the city boundary is accounted for, no matter whether the waste is treated inside (scope 1) or outside (scope 3) the city boundary.



BASIC+ reporting

The BASIC+ level requires communities to cover a broader range of emission sources in addition to the ones under the BASIC level. These emissions cover sources such as industrial processes (e.g., steel production), product use (e.g., paraffin use), agriculture, forestry and land use, and transboundary transportation.

BASIC+ also requires you to report scope 3 emissions associated with energy consumption (both stationary and transport). In the case of electricity consumption, these are emissions associated with transmission and distribution losses. For natural gas, petrol or diesel consumption, these are emissions attributable to upstream emissions in the production and transportation of the fuel.

Because scope 3 emission factors for energy consumption are readily available in most cases, cities that only report under BASIC also tend to report on these emission sources as part of an extended BASIC inventory.

Not all communities will have big industries or many agricultural emissions in their city/LGA. However, for the ones that do, they should be striving to report under BASIC+.

If you are reporting under the BASIC+ reporting level, you need to include the following scope 1, 2 and 3 emission sources:

  • All BASIC emission sources
  • Scope 3 emissions from electricity consumption (T&D losses)
  • Scope 3 emissions from transboundary transportation
  • IPPU
  • AFOLU

Summary of differences between BASIC and BASIC+ level reporting

The following table summarises the main differences between the two reporting levels.

Figure 2: Summary of differences between BASIC and BASIC+ level reporting

What is the minimum information you will need to report?

As a minimum, you need to report the following information:

  • Geographic area of the inventory boundary
  • Time span of the inventory (typically one year)
  • City information (population, GDP)
  • Emission sources across stationary (scope 1 and 2), in-boundary travel (scope 1 and 2), waste (scope 1 and 3)
  • Total emissions in tonnes of CO2-e, but also per constituent gas (CO2, CH4, N20)
  • Activity data, emission factors, data sources, assumptions and methodologies
  • Data quality assessment

It is challenging to develop carbon footprints that are in alignment with the GPC. Sometimes, it is easier to get the help of an expert who can guide you through the process. Here at 100% Renewables, we are certified City Climate Planners, proving our experience in community-level GHG emissions inventory accounting.

If you need help with developing community emissions inventories or pathways for emission reduction, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Categorising your GPC inventory into sectors and scopes – Part 2

In our previous blog post, we introduced community emission inventories. In this article, we are examining the Global Protocol for Community-scale Greenhouse Gas Emission Inventories (GPC) in greater detail. Specifically, we will look at how you need to categorise your emissions into sectors and scopes.

We recommend that you read our introductory article first to get a basic understanding of GPC inventories.

Categorising emission sources

When you develop a GPC inventory, you need to make sure to report emissions under the right sector and sub-sector.

Main sectors

According to the GPC, carbon emissions from city activities are categorised into six main sectors. Sectors are the topmost categorisation of city-wide carbon emission sources. The sectors are as follows:

  1. Stationary energy
  2. Transportation
  3. Waste
  4. Industrial processes and product use
  5. Agriculture, forestry and other land use
  6. Other scope 3 emissions

Sometimes, it can be tricky to decide whether an emission source goes under waste or stationary energy, or whether it goes under stationary energy or industrial processes. It can also be tricky to know where to account for the electricity used to charge electric vehicles and making sure that this is not double-counted under both the stationary and transportation sectors. The GPC provides guidance around these issues.

Sub-sectors

Sub-sectors are divisions that make up a sector (e.g., residential buildings, or transport modes such as on-road or railways). The following lists show the sub-sectors supporting the main sectors.

Stationary energy

Stationary energy is emission sources like electricity and natural gas consumption. This sector is divided into:

  • Residential buildings
  • Commercial and institutional buildings
  • Manufacturing industries and construction
  • Energy industries
  • Agriculture, forestry and fishing activities
  • Fugitive emissions

Transportation

Transportation comprises emissions from private and public transport on land, sea or in the air. This sector is divided into:

  • On-road
  • Railways
  • Waterborne navigation
  • Aviation
  • Off-road

Waste

Waste emissions come from the decomposition of organic materials when waste goes to landfill, is being composted/anaerobically digested or incinerated. Greenhouse gases from waste also include emissions from wastewater. The waste sector is divided into:

  • Solid waste disposal (waste going to landfill)
  • Biological treatment (like composting or anaerobic digestion)
  • Incineration and open burning
  • Wastewater

Industrial processes and product use (IPPU)

This sector is particularly important for cities with a lot of industry. This sector is divided into:

  • Industrial processes (comprises of carbon emissions not associated with energy use, e.g. production of mineral products, chemicals or metals)
  • Product use (entails the usage of products that emit greenhouse gases, like air conditioning equipment that releases refrigerants during its operation and when dismantled improperly, or using lubricants and oils)

Agriculture, forestry and other land use (AFOLU)

Emissions from AFOLU are the most difficult to estimate. This sector is divided into:

  • Livestock (digestion and manure of animals like cows and sheep)
  • Land (e.g. clearing of forests)
  • Aggregate sources (e.g. rice cultivation, fertiliser usage)


Other Scope 3

A limited number of scope 3 emission sources are included in the five sectors listed above. However, this particular sector encompasses all other scope 3 emissions, like embedded emissions in consumed goods and services.

You can report on other scope 3 emission sources optionally but must not include it in BASIC/BASIC+ totals (Part 3 of this blog series goes into the details of BASIC and BASIC+). It is expected that additional guidance will be released at a later date on how to account for other scope 3 emissions.

This sector contains mainly:

  • Embedded emissions in consumed products and services produced outside of the city boundary

Sub-categories

You can use sub-categories to further split up sub-sectors, such as vehicle types within the sub-sector of each transport mode (e.g. passenger vehicles) or building types within the stationary energy sector. Sub-categories can help you improve the quality of your inventory and identify suitable mitigation actions.

Categorising emissions by scope

Categorising emissions by scope is similar to the framework used in the GHG Protocol Corporate Standard. While the Corporate Standard classifies emission sources into scopes depending on the operational boundaries of an organisation, the GPC classifies emissions sources depending on whether they occur within or outside city boundaries.

Like the GHG Protocol, the GPC classifies scopes into scope 1, 2 or 3. Table 1 below shows the definition of the scopes and gives examples.

Table 1: GPC emission scopes 1, 2 and 3

It is challenging to develop carbon footprints that are in alignment with the GPC. Sometimes, it is easier to get the help of an expert who can guide you through the process. Here at 100% Renewables, we are certified City Climate Planners, proving our experience in community-level GHG emissions inventory accounting.

If you need help with developing community emissions inventories or pathways for emission reduction, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

An introduction to community carbon footprints – Part 1

Many local governments have had great success in monitoring, tracking and reducing emissions in their own operations. Now, more and more councils are starting to look outside their operations to help reduce emissions in their communities.

Local action across communities is needed to help reduce emissions in line with the Paris Agreement, which calls on countries to keep global warming to under 1.5° C above pre-industrial levels (please refer to an earlier article on science-based targets).

In this blog post, we introduce the basics about community emissions carbon footprints, including emissions sources, examples and methods.

Why is it important to develop greenhouse gas inventories for communities?

Tracking emissions on a national level helps with tracking our performance against the Paris Agreement as a country. However this information tends not to be tangible to many people and communities. Developing greenhouse gas emission inventories at a local level has many benefits, and can help you:

  • Understand how many tonnes your community is emitting – to have a starting point from which you can plan what you can do as a community to reduce emissions
  • Project your community’s emissions into the future – if your population is growing then new housing and business may see your emissions grow as well
  • Compare your community’s emissions to other similar communities, so there is a basis for collaboration (and competition) to reduce emissions
  • Know where the biggest sources of emissions are and which sectors contribute the most, so that plans and support measures you develop with your community are relevant and have the best chance of success
  • Set targets – to know what you are working towards. These may be overall aspirational goals, or they may be more targeted
  • Track and communicate emissions levels and the success of reduction measures to your community

What is the Global Protocol for community emissions (GPC)?

To enable communities and cities to report under one globally acceptable standard, the Global Protocol for Community-scale Greenhouse Gas Emission Inventories (GPC) was developed. It was launched in December 2014 by the World Resources Institute (WRI) and ICLEI Local Governments for Sustainability and is the most widely used framework to account for carbon emissions in a community.

The GPC outlines requirements and provides guidance to account for and report emissions, but it is up to you to choose a suitable methodology to calculate emissions for your community.

Developing a community carbon footprint aligned to GPC

Local governments are typically experienced in developing carbon footprints for their own operations, but may be new to developing footprints for their communities.

The GPC provides two approaches to developing community carbon inventories, a “territorial” approach and a “city-induced” approach. Within the city-induced approach two reporting levels are available, called “BASIC” and “BASIC+”. The differences between approaches and reporting levels, and the pros and cons of these will be the subject of a future blog post.

Whatever approach you use to develop a greenhouse gas emissions inventory for a community, it is important to set a geographic boundary first. In most cases, the geographical boundary of a Local Government Area (LGA) will be suitable, though in some cases developing estimates of emissions at a suburb level may be desirable – for example where the mix of land use, single houses, flats and business changes across a locality.

The next step is to pick a baseline year for which you want to develop an inventory. A recent calendar or financial year is typically selected, and provides a period of time against which you intend to monitor your community’s emissions going forward.

The main emission sources reported in your community GHG inventory will include:

  • Electricity consumption in the LGA (stationary energy)
  • Natural gas consumption in the LGA (stationary energy)
  • Private and public transportation
  • Waste
  • Wastewater

Other emissions that you can consider for a city-wide carbon footprint include:

  • Refrigerant losses
  • Fugitive emissions from industrial activities (production and use of mineral products and chemicals, production of metals)
  • Lubricants, paraffin waxes, bitumen, etc. used in non-energy products
  • Fluorinated compounds used in the electronics industry
  • Emissions from agriculture, forestry and other land use (AFOLU)
  • Other Scope 3 emissions

 

Example of a community inventory – Adelaide

The City of Adelaide emitted 951,000 tonnes of CO2-e in 2015. The graph below is reproduced from https://www.carbonneutraladelaide.com.au/about/how and shows the breakup of the city’s carbon footprint by sector. The biggest emissions come from stationary energy consumption, followed by transport, followed by waste.

Figure 1: The City of Adelaide’s carbon footprint

Example of a community inventory – Melbourne

The City of Melbourne reported emissions of 4,678,194 tonnes of CO2-e in 2017. The graph below is reproduced from https://www.melbourne.vic.gov.au/sitecollectiondocuments/climate-change-mitigation-strategy-2050.pdf  and shows the breakup of the city’s carbon footprint by sector. Like the City of Adelaide, the biggest emissions come from stationary energy consumption, followed by transport, and then waste.

Figure 2: The City of Melbourne’s carbon footprint

Can an inventory ever be perfect?

It is unlikely that your inventory will be perfect. When you develop a carbon footprint, there will be trade-offs between accuracy and completeness. The more emission sources you include, the more complete your inventory will be. However, it is not always easy to have accurate data at a local level for some emission sources, particularly transport and waste.

It’s safe to say that there will probably be gaps in your data, and you may have to make assumptions or use appropriate analytic methods to fill these gaps, which we described in this blog post. Just make sure you document your assumptions and aim to improve your inventory quality over time.

Can you set targets for community-wide emissions?

Over the last decades, many local governments have set emission reduction targets for their own operations.

It is also possible to set emission reduction targets for community-wide emissions and having a robust GHG inventory at the community level can help you to do this.

Both top-down and bottom-up approaches to target setting can be effective. A top-down target can set out an overall goal to aim for and signals your community’s intent to act to mitigate climate change – for example “net zero emissions by 2030”.

However, bottom-up targets can complement this and provide your community with some tangible metrics that are aligned with achieving the overall goal. For example, “doubling solar PV in the community by 2022”, or “installing 50 electric vehicle charging points in public spaces by 2025”.

Part 5 of this blog post series examines targets that local councils can develop to help their communities reduce their carbon footprint.

Considerations for councils developing community GHG inventories

Based on our experience working with local councils, we have identified some key factors that councils should consider when looking to develop an emissions profile of their community. These include:

  • Repeatability and cost – are the data inputs to your community inventory readily accessible or able to be estimated using a repeatable method or data set, or will you have to pay to access some or all of your data?
  • Comparability – if you are comparing your inventory with that of other cities and communities, be sure that you understand the boundaries and approaches used by others, so you are comparing ‘apples with apples’. We find this to be particularly important when looking at emissions estimates for transport and waste.
  • Alignment & frequency – local councils report on sustainability issues and efforts in a variety of ways, such as annual sustainability reports and periodic State of the Environment reporting. When planning when and how often to measure and report on community emissions within other reports, you should try to ensure that you can develop an inventory in a timely manner aligned with the timing of these.
  • Effort v impact – the overarching purpose of a community inventory is to help the community reduce their GHG emissions, so some consideration should be given to the level of effort required to estimate emissions sources based on their significance, data accessibility and abatement potential.


Need help with developing the carbon footprint of your community?

It is challenging to develop carbon footprints that are in alignment with the GPC. Sometimes, it is easier to get the help of an expert who can guide you through the process. Here at 100% Renewables, we are certified City Climate Planners, proving our experience in community-level GHG emissions inventory accounting.

If you need help with developing community emissions inventories or pathways for emission reduction, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

How to fill gaps in your sustainability data

A standard part of our work is the calculation of energy and carbon footprints. For an energy or carbon footprint, you need to collect sustainability activity data like electricity, natural gas, fuel consumption or waste.

In a perfect world, all required historical and current data would be available in easily accessible form and would always be accurate. Unfortunately, as you may have experienced yourself, this is not always the case. In this blog post, we will show you 3 common ways how you can fill missing sustainability data gaps.

Problems with collecting sustainability data

Common problems with collecting sustainability data include the following:

  1. Incomplete time series: Data may only be available for a few months of the year, it may be available for one year but not another, or the most recent data is not yet available.
  2. Out-dated data: You may require a data set annually, but the data may only be available less frequently. An example for this is waste data based on audits, which are performed infrequently.
  3. Partial data: You may be able to get one data set easily, but not another, or you may only have data for part of your organisation, but not another.
  4. Unreliable data: Data may available, but with obvious inconsistencies.

Three common techniques to overcome sustainability data gaps

In this blog post, we will show you three ways to overcome sustainability data gaps:

  1. Interpolation
  2. Extrapolation
  3. Scaling

You need to carefully evaluate your specific circumstances and determine the best option for your particular case. You may also be able to use more than one method for a specific problem and then make a final decision as to what method gives you the best result.

Interpolation of sustainability data

You can estimate missing data in a timeseries by interpolating between those periods. The method for interpolation can be linear or more sophisticated. Linear interpolation means that you are drawing a straight between the edges of your data gap. More sophisticated methods will allow you to account for more subtle features in your trend.

Figure 1: Using interpolation for data gaps

Please note that if your data fluctuates significantly, using interpolation will not give you the best result. It is good practice to compare interpolated estimates with surrogate/proxy data (see ‘Scaling’ section) as a quality control check.

Extrapolation of sustainability data

You will need to extrapolate your sustainability data to produce estimates for years after your last available data point and before new data is available. Extrapolation is similar to interpolation, but less is known about the trend.

Extrapolation can be conducted either forward (to predict future emissions or energy consumption) or backward, to estimate a base year, for instance. Trend extrapolation assumes that the observed trend during the period for which data is available remains constant over the period of extrapolation. If the trend is changing, you should consider using proxy data (see next section).

Figure 2: Using extrapolation for data gaps

When you use the simple linear method, you extend the line from the end of your known data line. You can also use more sophisticated extrapolation methods to account for more subtle features in the data trend.

The longer the extrapolation projects into the future, the more uncertainty is introduced. However, it is better to have an estimate, than not to have one at all.

It is good practice to update projected graphs with real data as this becomes available and to subsequently update your projections.

Please note that extrapolation is not a good technique when the change in trend is not constant over time. In this case, you may consider using extrapolations based on surrogate data.

Scaling

Scaling works by applying a ratio of known data to your data gap. The ratio is called a ‘scaling factor’. Known data is called surrogate, or proxy data. Surrogate data is strongly correlated to sustainability data that is being extrapolated and is more readily available than the data gap you are trying to fill.

For instance, emissions from transport are related to how many kilometres you travelled. Energy consumption in a building is related to how many people use the building. Emissions from wastewater are related to the population number.

Figure 3: Using scaling for data gaps

In some cases, you may need to use regression analysis to identify the most suitable surrogate data. Using surrogate data can improve the accuracy of estimates developed by interpolation and extrapolation.

Common scaling factors include:

  • number of employees, square metres, operating hours, or population (for community greenhouse gas inventories)
  • economic factors like production output, revenue, or GDP (for community greenhouse gas inventories)
  • weather-related factors like heating degree days or cooling degree days

Case example for extrapolation using scaling

One of our clients was evaluating the adoption of a science-based target. Given that a target is set some time in the future, they needed to find out how much carbon emissions would grow in the absence of abatement measures. Calculating this trend would show the size of the reduction task going forward.

We approached this task by following these steps:

  1. Extrapolation of the available historical greenhouse gas emissions into the future by applying an assumed year-on-year growth scaling factor.
  2. Refinement of the estimated trend by plotting known plant closures and other identified changes onto the timeseries.
  3. Application of estimated future emission factors. Since the grid is getting greener with new renewable energy projects feeding into it, the greenhouse gases associated with electricity consumption for the same underlying use reduce over time.
  4. Development of emission reduction scenarios. Once the baseline emissions growth was estimated, we developed emission reduction scenarios based on energy efficiency and renewable energy opportunities.
  5. Development of a graph to communicate the findings to the management team.

As a result of this extrapolation, our client was able to make an informed decision as to the ambition level of their target, as well as a suitable timeframe.

Conclusion

Choosing the right method depends on an assessment of the volatility of the sustainability data trend, whether surrogate data is available and adequate, and the length of time activity data is missing. If you need help with filling in data gaps, you should consider getting expert advice.

100% Renewables are experts in dealing with data gaps and projecting trends. If you need help with managing your data, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

5 ways of visualising emission reduction pathways

Many of our services involve the development of emission reduction pathways, which greatly enhance climate change action plans. In this blog post, we will show you 5 common ways to visually display such a pathway. Seeing these different illustrations can help you to shape how you would like to present your own organisation’s pathway towards a low carbon future.

Introduction

What are emission reduction pathways?

Emission reduction pathways allow for the easy communication of

  • where your organisation is currently at in terms of greenhouse emissions (or energy consumption)
  • where you can be through the implementation of reduction measures that are feasible and cost-effective over time
  • where you would be in the absence of any measures to reduce emissions

Pathways usually start with your selected baseline year and end at some point in the future, typically at 2030, or when agreed or proposed targets are to be met.

What do emission reduction pathways cover?

Boundary:

Your emissions boundary will typically consider three things:

  • The level of an organisation or region you want to assess in terms of emissions reduction. This could be a single site, an asset class (e.g. community buildings), a Division in an organisation, a whole organisation, a town or community, and up to State and National levels.
  • The emissions and energy sources that you want to evaluate. For example, electricity, natural gas, petrol, diesel, refrigerants, waste, wastewater and so on.
  • The Scopes of emissions you want to include. Typically Scope 2 (electricity) is included, and material Scope 1 emissions (on-site combustion or direct emissions). Selected Scope 3 emissions may also be included, such as upstream emissions associated with energy usage and waste.

Units of measure:

The unit for reductions or savings to be modelled will typically be tonnes of greenhouse gas emissions, or a unit of energy, such as kilowatt-hours or megajoules.

What greenhouse gas reduction measures are considered in abatement pathways?

For most organisations greenhouse gas reduction measures usually relate to six high-level carbon abatement areas as shown in Figure 1 below, being

  • Energy efficiency
  • Management of waste and other Scope 3 emissions sources
  • Sustainable transport
  • Local generation of renewable energy such as rooftop solar PV
  • Grid decarbonisation
  • Buying clean energy and/or carbon offsets

These high-level categories can be further broken down into as many subcategories as relevant within your selected organisation boundary.

Figure 1: 6 categories for carbon reduction opportunities

The need for a graphical representation of emissions pathways

For many people, it is hard to engage with complex data presented in a table or report. In our experience, it is most effective if abatement potential can be shown in a graph. The visual representation of a carbon abatement pathway allows people to better grasp the overall opportunity for abatement, where this will come from, and the timeframes involved.

It also helps organisations to better communicate their plans to their stakeholders, be they internal or external. Simple and well-presented graphics can also help when seeking decisions to budget for and implement cost-effective measures.

5 ways to graphically represent emission reduction pathways

There are many different ways you can display an emissions reduction pathway; some are more suited to specific circumstances than others. The five examples we are using in this blog post are:

  1. Line chart
  2. Waterfall chart
  3. Area chart
  4. Column chart
  5. Marginal Abatement Cost Curve (MACC)

Let’s look at these examples in detail.



Example #1 – line chart

A line chart is a simple but effective way to communicate a ‘Business-as-usual’ or BAU pathway compared with planned or target pathways at a total emissions level for your selected boundary. Such a boundary could be comparing your whole-business projected emissions with and without action to reduce greenhouse gases.

This type of graph is also useful to report on national emissions compared with required pathways to achieve Australia’s Paris commitments, for example.

Figure 2: Example of a line chart

Example #2 – waterfall chart

A waterfall chart focuses on abatement measures. It shows the size of the abatement for each initiative, progressing towards a specific target, such as 100% renewable electricity, for example. It is most useful to highlight the relative impact of different actions, but it does not show the timeline of implementation.

Figure 3: Example of a waterfall chart

Example #3 – area graph

Area graphs show the size of abatement over time and are a great way to visualise your organisation’s potential pathway towards ambitious emissions reduction targets.

They do not explicitly show the cost-effectiveness of measures. However, a useful approach is to include only measures that are cost-effective now and will be in the future, so that decision-makers are clear that they are looking at a viable investment plan over time to lower emissions.

Figure 4: Example of an area chart that shows reduction actions and diminishing emissions

Another option of displaying an area chart is shown in Figure 5. In this area chart, the existing emission sources that reduce over time are not a focus, and instead, the emphasis is on emission reduction actions. You may prefer this version if there is a large number of reduction measures, or if you include fuel switching actions.

Figure 5: Example of an area chart which emphasises emission reduction actions



Example #4 – column graph

A column graph is similar to the area graph but allows for a clearer comparison between specific years compared with the continuous profile of an area graph. In the example column graph below, we are looking at Scope 1 and Scope 2 emissions, as well as abatement in an organisation over a 25-year timeframe covering past and future plans.

In the historical part, for instance, we can see Scope 1 (yellow) and Scope 2 (blue) emissions in the baseline year. The impact of GreenPower® (green) on emissions can be seen in any subsequent year until 2018.

Going forward we can see in any projection year the mix of grid decarbonisation (red), new abatement measures (aqua) including fuel switching and renewables purchasing, as well as residual Scope 1 and 2 emissions.

Figure 6: Example of a column chart

Example #5 – Marginal Abatement Cost (MAC) Curve

MAC curves focus on the financial business case of abatement measures and the size of the abatement. MAC curves are typically expressed in $/t CO2-e (carbon), or in $/MWh (energy), derived from an assessment of the net present value of a series of investment over time to a fixed time in the future.

The two examples below show MAC curves for the same set of investments across an organisation. Figure 6 shows the outcome in 2030, whereas, in Figure 7, it is to 2040 when investments have yielded greater returns.

MAC curves are a good way to clearly see those investments that will yield the best returns and their contribution to your overall emissions reduction goal.

Figure 7: Example of a Marginal Abatement Cost curve with a short time horizon

Figure 8: Example of a Marginal Abatement Cost curve with a longer time horizon

Please note that no one example is superior over another. It depends on your preferences and what information you would like to convey to your stakeholders.

100% Renewables are experts in putting together emission reduction and renewable energy pathways. If you need help with determining your strategy, targets and cost-effective pathways, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Shrinking your combined load profile [includes video]

In June, Barbara, our Co-CEO, presented at the Renewable Cities Australia conference at the International Convention Centre in Sydney. The topic of her talk was ‘Reaching ambitious energy efficiency and renewables’.

At the core of her speech was a demonstration of how the combined load profile of a typical metropolitan local council changes after the implementation of energy efficiency and onsite renewable energy.

Please note that a video of the ‘shrinking load profile’ is included at the bottom of this post.

What is a load profile?

A load profile shows how your energy demand changes over a 24-hour period, from meter data that your energy retailer can provide on request or via a web portal linked to your account.

Meter data starts and ends at midnight and is usually in half-hour or 15-minute intervals. The vertical axis shows your energy demand in kilowatts as it changes over this time. The less your energy demand, the lower the curve.

A load profile can also be called ‘interval data’ and is a very useful tool for analysing your energy consumption. For example, a load profile can identify equipment that is running unnecessarily at night or may show you spikes in your energy consumption that hint at inefficient operation of equipment. Changes in your profile from summer to spring or autumn can give you an idea of the energy use needed for cooling in a building.

You use load profiles to help you identify how you can be more energy efficient, and they can also help you to size your solar PV installation.

What is a combined load profile?

A combined load profile adds the demand for all your sites to show you the overall energy demand of your organisation. This information is particularly important when you buy energy via a renewable energy Power Purchase Agreement that is supply-linked.

Building up a combined load profile

In this blog post, we build a combined load profile for a metropolitan local government. Figure 1 shows the combined demand of small sites, like small libraries, amenities blocks, community halls and childcare centres.

Energy demand typically rises sharply in the morning as people start to use these facilities, and it falls as people leave them in the evening. At night there is usually demand for appliances, small servers and emergency and exit lights.

Figure 1: The energy demand of small sites



Now, we are adding the electricity demand for large sites on top of the small sites. Examples for large sites are central administration offices & chambers, depots and aquatic centres. Night demand for depots and offices may be low with good after-hours controls. However, pools are usually heated all the time and can be energy-intensive at night.

Figure 2: The energy demand of large sites

The surprising thing for metropolitan councils is that most of the energy demand happens at night, through streetlighting, which runs from dusk until dawn. Streetlights can consume as much as half of a metropolitan council’s electricity! This creates a combined profile with high demand at night and a big dip in demand during the day.

Figure 3: The energy demand of streetlighting

Lastly, we add parks and sporting fields. Most of the energy demand for sporting fields is lighting and irrigation, so naturally, this demand also occurs from late in the evening (sporting field lights) to early morning (irrigation).

Figure 4: The energy demand of parks, ovals and fields

The impact of onsite energy efficiency and renewable energy measures on the combined demand profile

Now that we have a load profile that aggregates energy demand across all sites, let’s implement onsite abatement measures such as energy efficiency and solar PV.

So that you can see the impact of these measures, we are providing a visual cue to show you where our starting line is, because now we start subtracting.

Figure 5: Implementing onsite measures



Energy efficient lighting for parks and sporting fields

LED lighting replacements and smart controls for parks, ovals and fields can lead to a 40-70% reduction in energy demand. At the same time, you may improve your service provision through better lighting, more activated fields and higher utilisation. The net benefit is shown in Figure 6. A reduction in energy demand brings down the whole load profile from the starting point.

Figure 6: Lighting replacement for parks, ovals and fields

Figure 7 shows the impact of a bulk upgrade to LED lighting for local roads. LED streetlights are 60-80% more energy efficient than older technologies such as Compact Fluorescents or Mercury Vapour.

Figure 7: Streetlighting upgrade for local roads

Figure 8 shows the impact of a bulk upgrade to LED lighting for main roads, with similar levels of savings as local roads. Smart controls such as dimming can further increase savings for streetlights.

Figure 8: Streetlighting upgrade for main roads

Implementing energy efficiency improvements to lights, air conditioning, IT systems, appliances, motor systems and building controls at your facilities can achieve at least a 10% reduction, but more might be achievable. It depends on your individual circumstances and what measures you have implemented in the past.

Figure 9: Energy efficiency at Council sites

Installing onsite solar PV

Figure 10 shows the impact of installing onsite solar PV at your sites. You can see the dip in the load profile in the middle of the day, as the solar energy generation reaches its maximum.

Figure 10: Impact on Solar PV

Battery storage will allow further savings in your electricity and peak demand. Figure 11 illustrates how stored solar energy can reduce a building’s peak demand in the afternoon when peak demand charges might apply, thus reducing power bills.

Figure 11: More Solar PV and battery energy storage



What the load profile was and what it could be

So, we have implemented a number of cost-effective efficiency and renewable energy measures, and we can see that demand has reduced significantly. Figure 12 shows what the load profile looked like before implementation of any actions, and what it could be through energy efficiency and onsite solar PV.

Before you think about switching your electricity supply to offsite renewables (e.g. through a Power Purchase Agreement), you should consider the changes behind-the-meter measures like energy efficiency and solar PV can make to your energy demand, and how this can lower the amount of energy you need to buy over time.

Figure 12: Summary of what load profile is and what it could be

Switching your electricity supply to renewables

Figure 13 shows what remains of your original load profile. The next step will be to switch from conventional electricity supply to 100% renewable energy. This can be staged over time or may be possible all in one go.

Figure 13: Offsite opportunities like PPAs

Goals achieved!

In our experience, by implementing onsite energy efficiency and renewable energy measures, you can save 30-40% in electricity demand. By switching your supply to renewables, you can also achieve 100% renewable energy.

Figure 14: Goals Achieved!

You can watch a video of the shrinking load profile here:

Would you like to see how much you could reduce your load profile?

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with analysing your load profile and with developing your renewable energy plan, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Challenges with achieving ambitious targets

Challenges with ambitious targets
Challenges with ambitious targets

In part 1 of the blog series, we investigated what the scope of your climate change target could be. In part 2, we looked at the global and national goals you should be aware of. In this blog post, we will shed light on some of the challenges that you may face when setting ambitious goals.

Striking a balance

Setting targets is often about striking a balance between what we know can be achieved with today’s commercially available solutions and what will be available in coming years.

This is why many targets for renewable energy, for example, are 100% by 2030. It is expected that battery storage for solar and renewable energy sourcing for energy supply will be readily available and cost-effective by that time.

Interim targets tend to focus on onsite measures that are known to be cost-effective now, such as energy efficiency and solar panels.

Challenges with achieving ambitious targets

In our experience, both interim and ambitious long-term targets can present challenges for you. Here is a list of some of those challenges.

Ongoing internal support, resources and funding

This is often the most common barrier and challenge; how to gain and sustain the support and funds internally to make efficiency and renewable energy initiatives happen. There are usually limited funds, competing priorities and resources are stretched.

Without internal support at senior level as well as people to develop business cases and implement projects, most programs do not last or succeed.

Strategy tips:

  1. One or a few key staff and managers who want to see continued action on renewables and emissions reduction, and make it a priority on an ongoing basis.
  2. Having clear financing strategies for renewables, efficiency and other emissions reduction measures, including awareness of state and federal incentives such as the Energy Saving Scheme and the Renewable Energy Target, a consideration to fund from Capex or a loan, revolving energy funds or similar.
  3. Alignment of renewable energy and emissions reduction plans with your organisation’s strategy so that this is embedded in your organisational priorities.

Understanding electricity markets and your energy purchasing processes

Energy procurement will most likely deliver the bulk of your organisation’s ambitious renewable energy goals, so without a plan, you may not be able to achieve an ambitious renewable energy goal ahead of the ‘greening’ of the grid.

The ability to meet an ambitious renewable energy goal cost-effectively is heavily influenced by how you source electricity from the market. Whereas in the past, GreenPower® was available, but at a cost premium, many organisations are now able to source energy from renewable energy projects at similar or even lower cost than conventional power.

Strategy tips:

In this rapidly evolving environment, you need to take time to understand how the electricity market and renewables procurement work and develop your energy sourcing strategy accordingly. In particular, investigate the following aspects of energy procurement:

  • The current and future electricity and renewable energy market
  • Contract terms for renewable energy supply
  • Types of contracts for renewable energy purchasing
  • Interest in collaboration or partnering for volume to achieve better pricing are all aspects of energy procurement

Transport and waste

Transport and waste can be sources of large carbon emissions. However, solutions to achieve step-change in energy demand, renewable energy or carbon emissions can be limited, particularly if your organisation is already focusing on emission reduction in these areas.

In our experience, the level of focus on carbon emissions and renewables for these sources is low or lags the focus that is applied to electricity and stationary gas. This often leads to the omission of these sources from targets.

An emerging aspect of this is the potential for electrification of vehicles to change electricity demand and thus increase the amount of renewable electricity that needs to be sourced to meet ambitious targets. Some organisations are beginning to assess their future energy demand with an EV fleet and incorporate this into their long-term forecasts.

Strategy tips:

Consider including transport and waste in future targets if they are not already part of your goal. Make sure that you apply appropriate resources to understand opportunities and future trends.

The emergence of electric vehicles will introduce new challenges for the identification of new opportunities. A good strategy is to forecast what changes will occur and when. This may not be a significant factor for the next 4-5 years but will almost certainly be a more important issue as we approach 2030.

Organisational growth

While you are implementing efficiency and renewables, your energy demand may grow with organisational growth. Your emissions intensity may reduce, but your absolute emissions may still be growing.

Strategy tips:

The greater the level of organisational support and understanding of the nature, scale and timing of opportunities, as well as an understanding of the type and scale of changes that will occur to your assets over time helps to set targets that are realistic and achievable.

You need to take these changes into account so you know what combination of emission reduction options can help you meet your target in the most cost-effective way.

Conclusion

You may find you have only achieved a small part of your goal after a few years, despite the fact you have progressed several onsite solar and energy efficiency projects. Often, building energy efficiency and onsite solar can deliver part of the solution, but each project is individually small.

This is beginning to change with cheaper solar panels making larger-scale systems cost-effective, which in turn has a greater impact on emission reduction and onsite renewable energy generation.

The overall effort towards ambitious goals is likely to include a small number of measures that have individually significant impact (e.g., a renewable energy PPA), plus a large number of small measures that have low impact but are good for the bottom line.

Your strategy to meet ambitious targets should include both these measures.

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with developing a target and action plans that help you meet this target, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Allowable ‘offset mechanisms’ for 100% renewable energy and carbon neutral goals

This blog post has been updated in Dec 19 to reflect the re-branding of NCOS to ‘Climate Active’.

In an earlier blog post, we analysed two different targets, carbon neutrality and 100% renewable energy. In this blog post, we answer two customer questions about ways to offset typical emission sources, as well as displaying a summary table.

Can you offset your entire carbon footprint by purchasing renewable energy?

The short answer is no. It is possible for 100% of your electricity demand to be met by renewable energy. However, it won’t be possible to reach carbon neutrality solely based on an efficiency and renewables strategy.

This is because renewable electricity purchases can only be used to offset your electricity consumption and not to offset other emission sources like natural gas, diesel or petrol emissions, or supply chain emissions like paper consumption. For these emission sources, carbon offsets may need to be purchased until renewable energy alternatives are widely available.

You can read more about the differences between the energy and carbon footprint in this blog post.

Can you use LGCS to offset the electricity consumption from assets over which you don’t have operational control?

LGCs, or Large-Scale Generation Certificates are Renewable Energy Certificates, which certify that renewable energy has been produced. Every 1 MWh of eligible renewable energy generation creates 1 LGC. You can use LGCs to offset your electricity consumption and claim the renewable energy. You can buy LGCs indirectly by purchasing GreenPower®, by entering into a corporate PPA or buying LGCs through a broker.

LGCs can be used against your electricity consumption, but they can also be used to offset the downstream electricity consumption from assets over which you don’t have operational control. Examples of this would be the energy consumption of street lights in the case of councils or the energy consumption of an outsourced data centre.

Allowable offset mechanisms per emission scope
Figure 1: Allowable offset mechanisms per emission scope

You can purchase LGCs to cover your own electricity consumption plus additional ones for your outsourced assets and retire them on behalf of your outsourced provider. This decision is particularly important for the size of a potential Power Purchase Agreement.

Offsetting mechanisms for your typical emission sources

The following table helps to clarify which offset mechanism can be used against which emission source using the example of a Climate Active-compliant inventory. It also shows what emissions sources carbon neutrality and achieving 100% renewable energy relate to.

Allowable offset mechanisms for carbon neutrality and 100% renewable energy

Emission SourceUsing carbon offsets to ‘offset’Using LGCs (RECs) to ‘offset’Achieve carbon neutralityAchieve 100% renewable energy?
RefrigerantsYesNoYesN/A
Natural GasYesNoYesAchievable only with renewable fuels
Fleet Vehicles DieselYesNoYesAchievable only with renewable fuels
Fleet Vehicles PetrolYesNoYesAchievable only with renewable fuels
Fleet Vehicles EthanolYesNoYesAlready renewable
Fleet Vehicles BiodieselYesNoYesAlready renewable
Fleet Vehicles LPGYesNoYesAchievable only with renewable fuels
ElectricityYesYesYesYes
Electricity (Street Lighting)YesYesYesYes
Electricity consumption base buildingYesYesYesYes
Outsourced electricity consumption (e.g. data centres)YesYesYesYes
Water and sewerYesNoYesOnly if water/sewer provider is powered by renewables
PaperYesNoYesN/A
EquipmentYesNoYesN/A
Food and CateringYesNoYesN/A
PostageYesNoYesN/A
Taxis, Uber and other servicesYesNoYesOnly if third-party organisation has fleet powered by renewables
Employee commuteYesNoYesOnly if all employees’ commute is powered by renewables
Waste to landfillYesNoYesN/A
Green wasteYesNoYesN/A
Air travelYesNoYesOnly if planes are powered by renewables

If you would like to know more about the best strategy for your organisation to offset your emission sources given your unique circumstances, why not have an informal chat with Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.”