Tag Archives: carbon neutral

FAQs for becoming certified under Climate Active – Part 2

One of our service offers is helping our clients determine their Climate Active carbon footprint and obtain Climate Active certification from the Commonwealth Government. Over the last few months, we’ve received many calls of organisations wanting to find out more about Climate Active accreditation, which resulted in the publication of  Part 1 of this series.

In Part 2 of this series, we will discuss more details about scope 1, 2 and 3 emissions and what emission sources typically form part of a Climate Active carbon footprint. In the final blog post of this series, we will go into more details about how to get certified under Climate Active.

What are scope 1, scope 2 and scope 3 emissions?

Scope 1 emissions are emissions directly generated at your operations, such as burning natural gas or driving company cars, or refrigerant gases in your air conditioning equipment.

Scope 2 emissions are caused indirectly by consuming electricity. These emissions are generated outside your organisation (think coal-fired power station), but you are indirectly responsible for them.

Scope 3 emissions are also indirect emissions and happen upstream and downstream of your business. Examples are waste, air travel, the consumption of goods and services, contractor emissions, or leased assets.

Emission sources and scopes – graphic adjusted from the Corporate Value Chain Accounting and Reporting Standard

Figure 1: Emission sources and scopes – graphic adjusted from the Corporate Value Chain Accounting and Reporting Standard

Scope 3 categories

According to the GHG Protocol, specifically the Corporate Value Chain Accounting and Reporting Standard, there are 15 categories of scope 3 emissions

Upstream scope 3 emissions

  1. Purchased goods and services
  2. Capital goods
  3. Fuel- and energy-related activities (not included in scope 1 or scope 2)
  4. Upstream transportation and distribution
  5. Waste generated in your operations
  6. Business travel
  7. Employee commuting
  8. Upstream leased assets

Downstream scope 3 emissions

  1. Downstream transportation and distribution
  2. Processing of sold products
  3. Use of sold products
  4. End-of-life treatment of sold products
  5. Downstream leased assets
  6. Franchises
  7. Investments

While this list looks a bit overwhelming, not all emission sources will be relevant. It’s important to prioritise your data collection efforts and focus on your most significant and relevant emission sources. You can ask questions such as whether you expect the emission source to be large relative to your scope 1 and scope 2 sources, or whether you have influence over the activity, or whether your stakeholders deem the emission source relevant.

The graphic below shows a graphical representation of a typical Climate Active boundary for emission sources.

Typical Climate Active boundary for emission sources

Figure 2: Typical Climate Active boundary for emission sources

What are the benefits of calculating scope 3 emission sources?

Going through the list of upstream and downstream scope 3 emission sources is a great exercise to identify the carbon intensity of your value and supply chain. It encourages the quantification and reporting of emissions from various suppliers, which can help you drive greater emission reductions. It will also have a snowball effect by not only you focusing on reducing your direct emission sources, but also encouraging your suppliers to reduce theirs.

For many organisations scope 3 emissions can represent a much larger emission source than scope 1 and scope 2 emissions, and it is often eye-opening to calculate your carbon footprint across all three scopes. Also, the more scope 3 emission sources you include in your carbon inventory, the more credibility your statement of carbon neutrality will have.

Understanding scope 3 emissions will help you plan for potential future carbon regulations and can guide corporate procurement decisions and product design.

What emission sources are in a typical Climate Active footprint?

A Climate Active carbon footprint encompasses many emission sources across the three carbon accounting scopes. One of the first steps in getting certified under the Climate Active program is to determine your carbon footprint boundary.

You need to include all emissions that you have direct control or ownership of, such as natural gas, transport fuel usage by your vehicles, and electricity consumption in your operations. You also need to identify all emissions that are a consequence of your activities but are outside of your direct ownership or control, such as waste and contractors’ transport.

You must also include emissions from third party electricity use under your organisation’s control even if they are offsite, such as outsourced data centres, if these emissions are large relative to other emission sources.

You don’t need to include every single emission source, but you must assess all other direct and indirect emissions to determine whether they are ‘relevant’.

The relevancy test

Under Climate Active, particular emissions sources are relevant when any two of the following conditions are met:

  • The emissions are likely to be large relative to your electricity, stationary energy and fuel emissions
  • The emissions contribute to your GHG risk exposure, and including and addressing them will help you to avoid future costs related to energy and emissions
  • The emissions are deemed relevant by your key stakeholders (such as major customers, suppliers, investors or the wider community)
  • You have the potential to influence an emissions reduction
  • The emissions are from outsourced activities that were previously undertaken in-house, or from outsourced activities that are typically undertaken within the boundary for comparable organisations. Data centres and transport are typical examples of this.

If an emission source is relevant, you must include it in your carbon footprint boundary. You can exclude emissions that are not relevant, but you should disclose these in your public reporting documents.

You may find that many emission sources will be relevant, but you don’t have to collect data for all of them. For instance, if the associated emissions constitute less than 1% of the total carbon footprint, you can include the source in your boundary, but you don’t have to calculate its associated emissions.

There are many more questions to be answered, so stay tuned for Part 3 of this blog post series. If you are going through Climate Active certification for the first time, the whole process can seem a bit confusing. Engaging a registered consultant such as 100% Renewables will ensure a smooth and easy process. Please download our Climate Active brochure to find out more about how we can help you with your Climate Active certification.

100% Renewables’ staff are registered consultants with Climate Active. If you would like to achieve certification, or prepare for certification, please contact Barbara.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

 

FAQs for becoming certified under Climate Active – Part 1

One of our service offers is helping our clients determine their Climate Active carbon footprint and obtain Climate Active certification from the Commonwealth Department of Industry, Science, Energy and Resources.

Over the last few months, we’ve received many calls of organisations wanting to find out more about Climate Active accreditation, so we thought it would be a good idea to publish a Frequently Asked Questions about Climate Active. In this article, we will discuss questions about the program in general. In the next blog post, we will go into more details about how to get certified under Climate Active.

What is carbon neutrality?

Carbon neutrality (or zero net emissions) is reached when all emissions in your defined carbon footprint boundary are zero. Ideally, your carbon inventory boundary will encompass as many emission sources as possible so that your claim for carbon neutrality is credible.

You can reach carbon neutrality by:

  • Reducing your emissions onsite through energy efficiency or by installing solar PV
  • Buying renewable energy
  • Buying carbon neutral products and services
  • Netting off the rest of your emissions through the purchase of carbon offsets

What is Climate Active?

Carbon neutrality can be self-declared, by calculating your carbon footprint, and offsetting it. However, it does not come with the same credibility as getting certified under a Government-backed program. This is where Climate Active comes in.

Climate Active is a highly trusted certification program, which is administered by the Commonwealth Department of Industry, Science, Energy and Resources. It was first launched in 2010 and was originally known as the National Carbon Offset Standard (NCOS).

Initially, it was only possible to achieve carbon-neutral certification for organisations, products and services, but in 2017 the certification options were expanded to events, buildings and precincts.

Organisations that achieve certification under this program are allowed to display the Climate Active trademark and logo, which showcases this achievement.

What are the benefits of going carbon neutral under Climate Active?

Becoming certified under Climate Active shows that you are taking a stand in terms of climate change and that you want to be a leadership organisation. It signals to your staff, suppliers, and customers that you have a purpose beyond making money. Climate Active certification provides your business with the opportunity to:

  • Demonstrate that your organisation is a leader by taking a stand on climate action
  • Align with Sustainable Development Goals
  • Differentiate your brand and increase customer recognition
  • Meet growing stakeholder expectations and enhance reputation
  • Attract and retain talented employees and build internal capacity
  • Connect better with the community
  • Generate revenue, increase customer loyalty
  • Save energy and operating costs
  • Future-proof your organisation by managing carbon risk, including supply-chain risk

Can I go carbon neutral outside of Climate Active?

If you are looking to achieve carbon neutrality in Australia, the most credible way is to get certified under Climate Active. However, it is not mandatory to get certified under this Standard. You can use the Standard for guidance in calculating and offsetting your carbon footprint and self-declare carbon neutrality. Alternatively, you can use the Standard to understand what your Climate Active carbon footprint would look like, in preparation for future certification under the Standard.

Should we go carbon neutral under Climate Active now or wait till our net zero target date?

If you have a long-term goal to reach net zero emissions, you can fast track this achievement by going carbon neutral under Climate Active right away.

Then as you reduce your carbon emissions by installing solar, or by being more efficient with your energy use, you will be able to reduce your carbon offset purchases. Done this way, you have set yourself an internal carbon price (equal to the price of your carbon offsets), which you can use to get sustainability projects over the line more easily.

Going carbon neutral right away will also signal to the market that you are not working towards a goal that is far away, but that you are taking immediate steps to address climate change.

What is the difference between NGER and Climate Active?

The National Greenhouse and Energy Reporting (NGER) scheme, established by the National Greenhouse and Energy Reporting Act 2007 (NGER Act), is a national framework for reporting your greenhouse gas emissions, energy production and consumption. Reporting under NGER is mandatory for large energy users and carbon emitters, and only applies to scope 1 and scope 2 greenhouse gases (see the graphic below).

Emission sources and scopes – graphic adjusted from the Corporate Value Chain Accounting and Reporting Standard

Figure 1: Emission sources and scopes – graphic adjusted from the Corporate Value Chain Accounting and Reporting Standard

On the other hand, Climate Active is a voluntary program, and it requires that you report your upstream and downstream scope 3 emissions, as well as scope 1 and scope 2.

There are many more questions to be answered, so stay tuned for part 2 of this blog post series which discusses more details about scope 1, 2 and 3 emissions and what emission sources typically form part of a Climate Active carbon footprint.

If you are going through Climate Active certification for the first time, the whole process can seem a bit confusing. Engaging a registered consultant such as 100% Renewables will ensure a smooth and easy process. Please download our Climate Active brochure to find out more about how we can help you with your Climate Active certification.

100% Renewables’ staff are registered consultants with Climate Active. If you would like to achieve certification, or prepare for certification, please contact Barbara.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

 

5 key considerations for Climate Emergency Plans [includes video]

This blog post follows on from the one last week. I recently presented to the Maribyrnong community in Melbourne on emissions trends and barriers to the uptake of renewables, as well as considerations for the development of climate emergency plans. Today’s article discusses five key considerations.

You can also watch me talk about these five key considerations in this 5-min video:

About the Climate Emergency

The problem of rising GHG emissions

Global temperatures are rising and will continue to grow. Without globally significant efforts, greenhouse gas emissions may increase to over 100 billion tonnes annually by 2100, which is double current emissions. Even if all countries met their current pledges under the Paris Agreement, we are on track to exceed 1.5°C of warming (above pre-industrial temperatures), and to then increase by 3-5°C by 2100 — with additional warming beyond.

Projected temperature increase according to Climate Action Tracker

Figure 1: Projected temperature increase according to Climate Action Tracker

Rising global temperature causes catastrophic impacts, such as bushfires, droughts, floods, severe weather events, heat waves, rising sea levels and disruptions to our food supply.

By how much do we need to decrease emissions to have a ‘safe climate’?

According to climate science, a safe climate is one where global temperature increase stays less than 1.5°C above pre-industrial temperatures. We need to decrease our emissions by 45% from 2010 to 2030 and then to net-zero by mid-century to give us a 50/50 chance of meeting this target. This means that we need to almost halve our emissions by 2030.

Emitting greenhouse gases under a ‘current policies’ scenario means that climate risk will be catastrophic. Incremental change is not enough to get climate risk to an acceptable level. The only way this risk can be adequately managed is by rapid action.

Declaring a climate emergency

Declaring a climate emergency recognises that aiming for net-zero by 2050 may be too late. It means that your climate efforts need to

  • start now,
  • increase in scale rapidly and
  • continue for decades.

In 2016, Darebin City Council in Victoria was the first government in the world to declare a climate emergency. Now, as of the 1st of May, 95 Australian local governments have made the same declaration.

Following the declaration of a climate emergency, you need to develop a Climate Emergency Plan that sets out how you will help address the climate emergency.

5 key considerations for developing Climate Emergency Plans

Consideration #1: Net-zero ASAP

If your council declares a climate emergency, you should aim to achieve net-zero emissions for your LGA as soon as possible, for instance by 2030. You may even need to target negative emissions by mid-century by incorporating drawdown measures.

Drawdown is the projected point in time when the concentration of greenhouse gases in the atmosphere stops increasing and begins to reduce. Drawdown can only be achieved by removing greenhouse gases from the atmosphere, such as through agriculture and forestry.

Consideration #2: Include adaptation and resilience in your plan

Climate change is not some distant impact in the future. It’s here, and it’s affecting us already. Your climate emergency plan needs to include actions on how your council and community can adapt to climate change, in addition to reducing your carbon emissions.

Adaptation for council operations means that built assets, such as roads, stormwater drains and buildings, may not be able to withstand flooding, fire and intense storms. It means that your zoning and planning decisions will probably need to change and that there may be an increased demand for council services, such as water supply or community support for the elderly. Your area may also experience food supply issues. You will need to have emergency response plans for severe weather events, heat waves, flooding and bushfires and need to risk-assess the impacts on your community and corporate services.

Council also needs to help the community be resilient in the face of climate change. Resilience is the ability to withstand and recover from climate change impacts. As an example, you could help the community grow their own food and to develop resilience plans that assist your residents and businesses in bouncing back after a disaster.

Consideration #3: Include the community

Emissions for the operations of a local government are much smaller than overall community emissions. It is not uncommon for council’s emissions to only constitute 1% of overall emissions in the LGA. It’s not enough to focus on how council itself can mitigate against and adapt to climate change; the plan also needs to incorporate the community.

Climate emergency plan for the community should be developed with the community, by involving them through surveys and workshops, and by forming environmental advisory committees.

Emissions for council operations are small in comparison to community emissions

Figure 2: Emissions for council operations are small in comparison to community emissions

Consideration #4: Everyone must act

While the Federal and State governments have the greatest levers to reduce carbon emissions, local governments are closest to their communities. They play an important role in both mitigation and adaptation.

However, a council cannot alone bear the weight of emissions reduction and adapting to climate change in a community. Householders, business and all levels of government must collaborate to achieve the goals.

Local governments are in a great position to work directly with the community and to help them with addressing climate change rapidly. Council should also lobby other local governments, the state and federal governments to be more ambitious in their climate change action.

Consideration #5: Solutions already exist – they just need to be implemented

It’s easy to defer action by claiming that in future, better solutions will exist. The fact is though, that we already have all the solutions we need to mitigate against climate change. They only need to be implemented and fast.

It’s crucial to extend the scope of a climate emergency plan to a wide area of impact categories. Key solution areas of climate emergency plans are energy efficiency, solar PV, grid decarbonisation, transport, waste, buying clean energy, consumption of goods and services, emerging technologies, governance and leadership, forestry and agriculture, climate risk, clean energy generation, stationary fuel switching, education, and planning & development.

Key solution areas of climate emergency plans

Figure 3: Key solution areas of climate emergency plans

Within those solution areas, the biggest levers to achieve emission reduction in the community are solar panels on as many roofs as possible, energy efficiency in homes and businesses, electrification of space and water heating, electric vehicles, and waste diversion from landfill.

100% Renewables are experts in developing climate action strategies, both for council operations, as well as for the community. If you need help to develop your Climate Change Strategy, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

NSW Net Zero Plan Stage 1: 2020 – 2030

Key highlights

100% Renewables welcomed the Department of Planning, Industry and Environment’s Net Zero Plan Stage 1: 2020–2030[1], released on 14 March this year, along with the release of two additional Renewable Energy Zones in regional NSW.

While the Plan’s release has been understandably overshadowed by the Covid-19 global pandemic, it is nonetheless a big milestone that sees the first of three clear, 10-year plans released that will set a pathway to net zero emissions by 2050.

It takes an aspirational 30+ year goal and brings it back to tangible actions, cross-sectoral measures, and a range of funded programs that will help governments, business and householders in NSW play their role in moving NSW to a low carbon economy.

From our reading of the Plan, there are a number of key highlights:

  • Action is grounded in science and economics, and a central focus of the Plan is about jobs that will be created and about the lowering of energy costs for consumers. Emissions reductions are a by-product of good investments in new technologies over the long term that boosts overall prosperity. Too much of the negative commentary on decarbonisation is about jobs that will be lost, and more focus is needed on the jobs that will be created, what they will be, and importantly where they will be.
  • We already have many of the technologies to drive significant abatement. Investing in breaking down barriers to these technologies is the simplest and shortest path to accelerating investment in these technologies, like:
    • energy-efficient appliances and buildings,
    • rooftop solar panels,
    • firmed grid-scale renewables,
    • electric vehicles and
    • electric manufacturing technologies.

Electrification and switching to renewables are core short, and medium-term decarbonisation strategies of many of our clients and this focus can help accelerate this transition.

  • The Plan provides certainty to investors that NSW is a place to invest in renewable energy, efficient technologies and sustainable materials. It also signals that NSW aims to lead in the development of emerging technologies that create new opportunities, whilst being flexible to re-assess and re-prioritise efforts during the Plan period.
  • Reducing our emissions by 35% by 2030 and to net-zero by 2050 is a shared responsibility, and the Plan clearly sets out the expectation that all business sectors, individuals and governments must play their part.

  • A broadening of the focus of abatement efforts to encompass low-carbon products and services, integrating these into existing and new initiatives, and providing consumers with more information to influence decisions is welcome.
  • Clarity on some of the funding, targets and programs that will help drive this change, such as:
    • $450 million Emissions Intensity Reduction Program
    • $450 million commitment to New South Wales from the Climate Solutions Fund
    • $1.07 billion in additional funding via both NSW and Commonwealth Governments in a range of measures
    • Development of three Renewable Energy Zones in the Central-West, New England and South-West of NSW to drive up to $23 billion in investment and create new jobs
    • Establish an Energy Security Safeguard (Safeguard) to extend and expand the Energy Savings Scheme
    • Expanded Energy Efficiency Program
    • Expanded Electric and Hybrid Vehicle Plan with the Electric Vehicle Infrastructure and Model Availability Program to fast-track the EV market in NSW
    • Primary Industries Productivity and Abatement Program to support primary producers and landowners to commercialise low emissions technologies
    • Target of net-zero emissions from organic waste by 2030
    • Development of a Green Investment Strategy, with Sydney as a world-leading carbon services hub by 2030
    • Enhancement of the EnergySwitch service by allowing consumers to compare the emissions performance of energy retailers
    • Advocate to expand NABERS to more building types, and improve both the National Construction Code and BASIX
    • Establishment of a Clean Technology Program to develop and commercialise emissions-reducing technologies that have the potential to commercially out-compete existing emissions-intense goods, services and processes
    • Establishment of a Hydrogen Program that will help the scale-up of hydrogen as an energy source and feedstock, and the setting of an aspirational target of up to 10% hydrogen in the gas network by 2030
    • Aligning action by government under GREP with the broader state targets through clear targets for rooftop solar, EVs, electric buses, diesel-electric trains, NABERS for Government buildings, power purchasing and expansion of national parks

We believe that the Net Zero Plan Stage 1: 2020–2030 is a good start in the right direction for NSW. We are looking forward to helping NSW organisations to set and reach their renewable energy and abatement goals, and to avail of available information, support and incentives that help them achieve their goals.

We will be keeping track of the Plan as it is rolled out and evolves over time, and will keep clients informed about opportunities that are aligned with their needs and objectives.

[1] © State of New South Wales 2020. Published March 2020

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with developing emission scenarios that take into account policy settings, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Part 4: University leadership – fossil fuel divestments

To recap, we have already published three blog posts of our University leadership series. Part 1 showed the ambitious renewable energy and carbon-neutral commitments of leading universities across Australia, Part 2 highlighted universities with Green Star certified buildings, and Part 3 detailed universities’ commitments to the Sustainable Development Goals or SDGs.

This is Part 4 of our tertiary education sector blog series where we look at the role of universities in fossil fuel divestments. We briefly discussed this previously in our blog post in 2017 which highlighted a number of universities who have committed to partially or fully divest from fossil fuels.

The movement to divest from the fossil fuel industry has grown rapidly in recent years and commitments have been made by many organisations, including local councils, charitable trusts, super funds and the ACT Government. Universities have been a central focus of the campaign with students urging their administrations to turn endowment investments in the fossil fuel industry into investments in clean energy and communities most impacted by climate change.

What is fossil fuel divestment?

According to Wikipedia, fossil fuel divestment is an attempt to reduce climate change by exerting social, political, and economic pressure for the institutional divestment of assets including stocks, bonds, and other financial instruments connected to companies involved in extracting fossil fuels.

Australian Ethical reports that, in 2019, the fossil fuel divestment movement is making it clear to companies who extract coal, oil or gas from the ground that they do so without a social licence. The release of harmful greenhouse gases into the atmosphere via the burning of these fossil fuels is threatening to destabilise life on this planet.

In Australia, fossil fuel divestment is being led by Universities and Local Councils as part of the global fossil fuel divestment campaign launched by 350.org in 2011.

Universities with fossil fuel divestment commitments

The following table shows universities that have made fossil fuel divestment commitments.

NoStateUniversityAcronymFossil fuel divestment commitments
1ACTAustralian National UniversityANUPartially divest by targeting coal
2NSWUniversity of NewcastleNEWCASTLE“We no longer directly invest in fossil fuel companies and we have integrated Mercer’s ESG ratings across the University’s investments.”
3NSWUniversity of New South WalesUNSWSignificantly reducing their investment in fossil fuels
4NSWUniversity of SydneyUSYDDivestment from many of Australia's largest 200 oil and gas companies
5QLDQueensland University of TechnologyQUT“No fossil fuel direct investments” and “no fossil fuel investments of material significance”
6VICLa Trobe UniversityLATROBEFully divest from fossil-fuel related company investments over the next five years
7VICMonash UniversityMONASHPartially divest by targeting coal
8VICSwinburne University of TechnologySWINBURNE"Divest from companies that earn significant revenues from fossil fuel extraction or coal power generation"
9VICUniversity of MelbourneUNIMELBDivest from companies that do not meet the requirements of a to-be-developed “sustainable investment framework for managing material climate change risk”, by 2021

100% Renewables are experts in helping organisations develop their climate change strategies and action plans, and supporting the implementation and achievement of ambitious targets. If you need help to develop your Climate Change Strategy, please contact Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Setting targets for community emissions – Part 5



This is part 5 of our blog post series on community emissions. The first four articles investigated the development of a community GHG inventory. This article analyses community targets for greenhouse gas emissions.

What is greenhouse gas emissions community target?

A target for a city or community relates to a desired future GHG emissions result for a local government administration boundary.

Introduction

Humans and communities are at the centre of climate change. Reducing emissions is a shared responsibility of governments, businesses and of cities and communities. Moreover, in the absence of strong national leadership, local governments need to step in and act. Setting targets enables efforts to be directed towards achieving that target, rather than letting emissions grow unchecked.

However, setting an appropriate target can be confusing. What percentage reduction should you choose? What target year shall you select? Should the target revolve around renewables or carbon emissions, or should you instead focus on tangible measures like solar PV installations in your community?

What targets are in line with science? What target will get accepted by the community? What kind of targets are other cities and communities setting themselves? Should the local government drive the target setting or shall efforts be community-driven?

Before we try to answer these questions, let’s have a look at the underlying problem first.

Rising carbon emissions and the Paris Agreement

Due to all historical and current carbon emissions, global temperatures have already increased by ~1°C from pre-industrial levels, with even higher increases being experienced on land. Atmospheric levels of carbon dioxide have risen to above 400 ppm, which exceeds the ‘safe’ level of 350 ppm. Moreover, the IPCC predicts that without additional efforts, there will be further growth in emissions due to increased economic activity and population growth.

The main driver of long-term warming is the total cumulative emissions of greenhouse gases over time. As shown by Climate Action Tracker in Figure 1, without additional efforts, human-caused carbon emissions may increase to over 100 billion tonnes annually by 2100, which is double current global emissions. The resulting increase in global temperatures could be up to 4.8°C (as per the IPCC Climate Change 2014 Synthesis Report).

However, with current climate policies around the world, global temperatures are projected to rise by about 3.2°C.

To prevent dangerous climate change by limiting global warming, close to 200 of the world’s governments signed the landmark Paris Agreement. The Paris Agreement forms the basis of science-based targets to limit global temperature increase to well below 2°C by 2050. With current pledges, and if all countries achieved their Paris Agreement targets, it could limit warming to 2.9°C.

The Climate Action Tracker’s warming projections for 2100, various policy scenarios
Figure 1: The Climate Action Tracker’s warming projections for 2100, various policy scenarios

However, to limit warming to well below 2°C, let alone 1.5°C, current Paris pledges made by countries are not enough[1]. Carbon emissions need to decline at a much steeper rate in the near future and reach net-zero by mid-century to have a 50% chance of keeping warming below 1.5°C.

Achieving net-zero by 2038 improves this chance to two thirds, but global emissions would have to fall by up to 70% relative to 2017 levels by 2030. For every year of failed action, the window to net-zero is reduced by two years[2].

So how many greenhouse gases can still be emitted? This concept is encapsulated in the term ‘carbon budget’.

What is a carbon budget?

Just like a financial budget sets a ceiling on how much money can be spent, a carbon budget is a finite amount of carbon that can be emitted into the atmosphere before warming will exceed certain temperature thresholds.

The concept of a carbon budget emerged as a scientific concept from the IPCC’s 2014 Synthesis Report on Climate Change and relates to the cumulative amount of carbon emissions permitted over a period. Given that the carbon budget is not annual, but cumulative, it means that once it is spent, carbon emissions have to be held at net zero to avoid exceeding temperature targets.

Higher emissions in earlier years mean that there can only be lower emissions later on. You can compare this concept to your own budget. If your yearly budget was $120,000, and you spent $30,000 in each of January and February, you would only have $60,000 left to spend between March and December, or $6,000 per month. Conversely, if you are careful with what you buy and only spend $5,000 every month, then your budget will last twice as long (2 years).

The carbon budget for limiting warming to 1.5°C is smaller than the carbon budget for limiting warming to 2°C.

Please have a look at the following two carbon budgets we developed for a local government client. The ‘blue budget’ shows a 2°C pathway, whereas the ‘orange budget’ shows a 1.5°C scenario.

Example of 2°C carbon budget

Example of a 2°C carbon budget
Figure 2: Example of a 2°C carbon budget for a community greenhouse gas emissions target

Example of 1.5°C carbon budget

Example of a 1.5°C carbon budget
Figure 3: Example of a 1.5°C carbon budget for a community greenhouse gas emissions target

The area of the carbon budget is much smaller in the ‘orange’ graphic. And while both carbon budgets trend towards net zero in 2050, there are much steeper reductions earlier on in the 1.5°C scenario.

How can you set a target/carbon budget based on science?

Targets are considered science-based if they are in line with the level of decarbonisation required to keep global average temperature increase well below 2°C compared to pre-industrial temperatures, as described in the Fifth Assessment Report of the IPCC. All science-based target setting methods use an underlying carbon budget.

There is no universally accepted method of how to calculate carbon budgets at the city level and many cities have worked hard at developing a fair carbon budget. As per the C40 Deadline 2020 report, the three principles that dominate the debate on the allocation of carbon budgets are:

  1. Equality, based on an understanding that human beings should have equal rights
  2. Responsibility for contributing to climate change, linked to the ‘polluter pays’ principle
  3. Capacity to contribute to solving the problem (also described as capacity to pay).

Specific considerations include the current global carbon budget[3], adjusting it to an appropriate time frame, adjusting it from carbon dioxide to carbon dioxide equivalents, and then deriving a fair and equitable national budget. Once there is a national budget, it needs to be apportioned fairly to the city by using factors such as population and potentially adjusting it based on the sector representation in the community.

A simpler method to arrive at a carbon budget that is tracking towards net-zero is to follow a science-based target-setting method by adopting a target which is proportional to the overall world’s target using the contraction approach and to scale emissions down linearly. There are two science-based temperature scenarios you can align with, a 2°C and a 1.5°C scenario. The minimum annual linear reduction rates aligned with 1.5°C and 2°C scenarios are 4.2% and 2.5%, respectively.

Example method for calculating your science-based target

The following method, which you can use as an example, shows six steps on how to set a community emissions target based on science.

Step 1: Calculate your GHG inventory

Your carbon inventory should be aligned to GPC. Please read our article on calculating community carbon footprints if you are unsure about this step.

Step 2: Project emissions

Once you have a fully developed carbon inventory, project your emissions into the future to get an idea of where your emissions will be in the absence of any abatement measures

Step 3: Decide on carbon budget allocation method

Choose an approach that is suitable for your circumstances. The simplest method is to contract to net-zero by 2050.

Step 4: Choose a pathway

You need to choose whether you want your emissions trajectory to align with a 1.5°C or a 2°C scenario.

Step 5: Choose a target year

While you are aiming to track towards net zero by mid-century, it will help to establish interim targets, based on your chosen degree scenario.

Step 6: Validate your decisions

Consult your community to get feedback.

Six steps to set a science-based community emissions target
Figure 4: Six steps to set a science-based community emissions target

What kind of targets are there?

There are two main categories of targets, top-down and bottom-up ones.

Top-down targets

With top-down goals, you set the goal first, and then determine actions to get there. Top-down targets can be informed by science (‘science-based targets’) or by a community’s aspirations. Each of these approaches effectively gives the community a carbon budget to stay within for any chosen pathway.

Externally set top-down target – science-based:

An external top-down target is informed by science. Science-based targets are aligned with either a 2°C or 1.5°C pathway and lead to net-zero emissions by 2050.

Internally set top-down target – aspirational:

Aspirational targets express the vision of a community and where it would like to be in future. They often relate to a target year earlier than 2050.

Bottom-up targets

With bottom-up targets, you analyse the carbon footprint first and then develop abatement actions. Carbon reduction actions are modelled to investigate the amount of carbon reduction that can be achieved and the cost to facilitate and fund them. Based on the level of carbon reduction that is feasible, you set a corresponding target.

Top-down and bottom-up targets can work in tandem. For instance, you can decide to set a science-based target, and then translate this target into tangible, staged and evidence-based bottom-up targets. Examples of such tangible targets are the number of solar PV installations on houses, or the rate and amount of electric vehicle take-up in a community.

Who sets a community target?

Targets can come directly from the community, or they can be driven by the local government authority. If they are driven by the local government, it is a good idea to undertake community consultation, present the facts and then get feedback on the proposed target(s).

What does a net-zero target mean?

A net-zero target means that by (and from) the target date, there must be no greenhouse gas emissions on a net basis. Within the geographic boundaries of a city, a ‘net zero city’ is defined as:

  1. Net-zero GHG emissions from stationary energy consumption such as natural gas use (scope 1)
  2. Net-zero GHG emissions from transport activities (scope 1)
  3. Net-zero GHG emissions from electricity consumption (scope 2)
  4. Net-zero GHG emissions from the treatment of waste generated within the city boundary (scopes 1 and 3)
  5. Where a city accounts for additional sectoral emissions in their GHG accounting boundary (e.g. IPPU, AFOLU), net-zero greenhouse gas emissions from all additional sectors in the GHG accounting boundary

Table 1: Definition of a net-zero target for a city

Definition of a net-zero target for a city

Once you have achieved carbon neutrality, it needs to be maintained year after year. For further information, please refer to the C40 paper, ‘Defining Carbon Neutrality For Cities And Managing Residual Emissions’.

Using carbon offsets to reach net-zero

Even after you have reduced your emissions as much as possible, there may be a residual carbon footprint. It may not be technically or economically possible to achieve zero emissions for all inventory sources, in which case you can consider carbon offsets.

As per the C40 paper Defining Carbon Neutrality for Cities, possible approaches for carbon offsets you can consider include:

  1. Developing carbon offset projects outside of the city GHG accounting boundary (including local/regional projects that may or may not generate tradeable carbon credits) and taking responsibility for managing the project for the duration of its lifetime;
  2. Investing in carbon offset projects outside of the city GHG accounting boundary (e.g. provide funding to enable a project to get underway or commit to purchasing a set quantity of future vintages, thereby providing upfront funding for credit registration costs), and
  3. Purchasing carbon offsets from outside of the city GHG accounting boundary (local, national, or globally-sourced projects that generate tradeable carbon credits) from a registered/credible/established carbon credit provider.

As with any carbon offset purchase, your carbon credits should be credible and of high quality. Criteria that your carbon offset projects should achieve are that they are real, additional, permanent, measurable, independently audited and verified, unambiguously owned and transparent.

Using Carbon Dioxide Removal and Negative Emissions Technology to reach net-zero

Carbon Dioxide Removal (CDR) means that you are removing carbon dioxide from the atmosphere in addition to what would happen anyway via the natural carbon cycle. Because you are removing carbon emissions, this is also called ‘negative emissions’, or ‘negative emissions technology’ (NET).

You can draw out excess carbon dioxide from the atmosphere by enhancing natural carbon sinks (trees and soil) or using chemical processes, such as extracting carbon dioxide from the air and storing it somewhere suitable (e.g., underground).

Negative Emission Technology (NET) is at various stages of commercial development and differs in terms of maturity, scalability, costs, risks, and trade-offs. To date, none of these technologies has been adopted at large scale.

As a side note, in IPCC modelling, all pathways that limit global warming to 1.5°C include CDR measures. If we cannot reduce emissions fast enough, global temperatures will overshoot 1.5°C, which means that we need NET to bring global temperatures back down.

A city that plans on utilising NET is Oslo. The single biggest carbon reduction measure in Oslo’s Climate and Energy Strategy is the implementation of carbon capture and storage (CCS) at its Klemetsrud waste incineration facility.

Target setting under the Global Covenant of Mayors and C40

Target setting under the Global Covenant

The Global Covenant of Mayors for Climate & Energy (GCoM) is the world’s largest alliance of cities and local governments with a shared long-term vision of promoting and supporting voluntary action to combat climate change and move to a low emission, climate-resilient future. As of October 2019, 26 local governments in Australia have joined the GCoM.

Through the GCoM, cities and local governments are voluntarily committing to fight climate change, mirroring the commitments their national governments have set to ensure the goals of the Paris Agreement are met.

Local governments committed to GCoM pledge to implement policies and undertake measures to:

  • Reduce/limit greenhouse gas emissions
  • Prepare for the impacts of climate change
  • Increase access to sustainable energy
  • Track progress toward these objectives

When you join the Global Covenant of Mayors, you need to submit a greenhouse gas emissions reduction target(s) within two years upon joining. The target boundary needs to be consistent with all emissions sources included in your GHG emissions inventory. The target year needs to be the same (or later than) the target year adopted nationally under the Paris Agreement. The national target is called the ‘Nationally Determined Contribution’ (NDC).

If you set a target beyond 2030, you also need to set an interim target. The target needs to be at least as ambitious as the unconditional components of the NDC. You are only allowed to use carbon offsets if your target’s ambition exceeds the NDC.

Target setting under C40

C40 is a network of the world’s megacities committed to addressing climate change. Cities that commit to being part of C40 need to have a plan to deliver their contribution towards the goal of constraining global temperature rise to no more than 1.5°C. In Australia, Sydney and Melbourne are members.

To remain within a 1.5°C temperature rise, average per capita emissions across C40 cities need to drop from over 5 t CO2-e per capita to around 2.9 t CO2-e per capita by 2030. Every city needs to diverge considerably from its current business-as-usual pathway and cities with a GDP over USD15,000 per capita must begin to reduce their per capita emissions immediately, which results in an immediate and steep decline of emissions.

C40 recommends that the trajectory for emission reduction follows the typology as introduced in Deadline 2020.

  • Steep Decline – Cities with a GDP per capita over $15,000 and emissions above the average for C40. Emissions need to be immediately and rapidly reduced and the city is sufficiently developed to do so.
  • Steady Decline – Cities with a GDP per capita over $15,000 but emissions lower than the average for C40. The city is sufficiently developed to immediately reduce emissions, but a less rapid rate of reduction is required than for the Steep Decline group.
  • Early Peak – Cities with GDP per capita below $15,000 and higher than average emissions per capita. An early emissions peak is required, although the city’s development status means that decline cannot be immediate.
  • Late Peak – Cities with a GDP per capita below $15,000 and lower than average emissions per capita. A slightly later emissions peak is possible.

The following table shows the current and reduced science-aligned and C40 per capita emissions for scopes 1, 2 and 3.

Table 2: Average per capita emissions figures for C40 cities in 1.5- and 2-degree trajectories

Average per capita emissions figures for C40 cities in 1.5- and 2-degree trajectories

Examples of city targets

The following list shows examples of ambitious targets for cities across five continents.

EThekwini Municipality, Africa

The eThekwini municipality includes the city of Durban, South Africa and surrounding towns. It is the first city in Africa to develop a 1.5°C climate action plan with the support of the C40 Cities Climate Leadership Group. The target is to reach a 40% reduction in emissions by 2030 and 80% reduction by 2050.

Hong Kong, Asia

In May 2019, Hong Kong achieved CDP’s top ‘A’ score for its climate strategy, among 7% of cities reporting to the CDP. Hong Kong’s targets are as follows:

  • Reduce carbon intensity by 65% to 70% by 2030 compared with the 2005 level, which is equivalent to an absolute reduction of 26% to 36%
  • Resulting in per capita emission of 3.3 to 3.8 tonnes in 2030
  • Carbon emissions to peak before 2020

The 2030 Climate Plan includes objectives, such as phasing down coal for electricity generation and replacing it with natural gas by 2030, saving energy in the built environment, focusing on rail as a low-carbon public transport backbone and encouraging active transport modes, such as walking.

The Australian Capital Territory (ACT), Australia

The ACT is a federal territory of Australia containing the Australian capital city of Canberra and some surrounding townships. The ACT’s first targets were introduced in 2010, revised in 2016 to increase ambition and again in 2018. The current targets are to reduce emissions (from 1990 levels) by:

  • 40% by 2020
  • 50-60% by 2025
  • 65-75% by 2030
  • 90-95% by 2040
  • 100% (net zero emissions) by 2045.

The ACT also set a target to peak emissions per capita by 2013. This was achieved in 2012-13 at 10.53 tonnes of CO2-e per person and has remained below this level ever since. In 2017-18, emissions were 8.09 t CO2-e per capita. The ACT’s targets were informed by considering the ACT’s share of the global carbon budget.

Oslo, Europe

Oslo has the objective to become a ‘virtually zero-emission city’. The current targets are as follows:

  • Greenhouse gas emissions should not exceed 766,000 tons of CO2-e by 2020 (applicable to all emission sectors except agriculture, aviation and shipping)
  • Reduction of greenhouse gas emissions by 95% by 2030 (compared to 1990 levels)

The second goal depends on the successful removal of emissions from a major waste incineration plant.

In 2016, Oslo introduced a climate budget, which sets a ceiling on the volume of carbon dioxide that can be emitted in the city in a given year. The climate budget is fully integrated with the financial budget of the city. The climate budgets show measures implemented or planned for Oslo to reach its climate targets and become a low-carbon city.

San Francisco, North America

In its Focus 2030: A Pathway to Net Zero Emissions, San Francisco defines the following targets:

  • Supplying 100% renewable electricity from 2030
  • 68% reduction in emissions below 1990 levels by 2030
  • 90% reduction by 2050

San Francisco identified that emission reduction must come from three primary sectors, being buildings, transportation and waste. The city also defined sub-targets for these sectors.

Transportation:

  • Shift 80% of all trips taken to walking, biking and transit by 2030.
  • Electrify 25% of private cars and trucks by 2030 and 100% by 2040.

Buildings:

  • Electrify space and water heating with high-efficiency products such as heat pumps
  • Increase building energy efficiency
  • Power buildings with 100% renewable electricity

Waste:

  • Reduce generation by 15% by 2030
  • Reduce disposal to landfill or incineration by 50% by 2030

Conclusion

Cities and communities should consider setting themselves targets in line with science. To avoid catastrophic climate change, emissions need to start falling now and reach net zero by 2050. Interim targets will help to stay under an allocated carbon budget.

Both vision and leadership are needed to enable steep cuts to our emissions, which translates into unprecedented, rapid change across the globe to limit global warming. The way electricity is generated needs to change to clean energy. The way we transport people and goods and the way we produce everything needs innovation. Land use planning plays a big part, and different economic models need to be adopted that will makes such a transformational shift possible. In the next part of this series, we will look at community carbon abatement measures in greater detail.

100% Renewables are experts in helping organisations, communities/LGAs and councils determine suitable targets, be they science-based, aspirational or bottom-up/action-based. Our community inventories align with the GPC and targets can be based on IPCC global carbon budgets. If you need help with your community inventory, please contact  Barbara or Patrick.

Footnotes

[1] For instance, Australia’s commitment under the Paris Agreement is 26-28% below 2005 levels by 2030

[2] https://www.c40.org/researches/defining-carbon-neutrality-for-cities-managing-residual-emissions

[3] The Global Carbon Budget website provides annual updates of the global carbon budget and trends.

Please share

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog. 

5 ways of visualising emission reduction pathways

Many of our services involve the development of emission reduction pathways, which greatly enhance climate change action plans. In this blog post, we will show you 5 common ways to visually display such a pathway. Seeing these different illustrations can help you to shape how you would like to present your own organisation’s pathway towards a low carbon future.

Introduction

What are emission reduction pathways?

Emission reduction pathways allow for the easy communication of

  • where your organisation is currently at in terms of greenhouse emissions (or energy consumption)
  • where you can be through the implementation of reduction measures that are feasible and cost-effective over time
  • where you would be in the absence of any measures to reduce emissions

Pathways usually start with your selected baseline year and end at some point in the future, typically at 2030, or when agreed or proposed targets are to be met.

What do emission reduction pathways cover?

Boundary:

Your emissions boundary will typically consider three things:

  • The level of an organisation or region you want to assess in terms of emissions reduction. This could be a single site, an asset class (e.g. community buildings), a Division in an organisation, a whole organisation, a town or community, and up to State and National levels.
  • The emissions and energy sources that you want to evaluate. For example, electricity, natural gas, petrol, diesel, refrigerants, waste, wastewater and so on.
  • The Scopes of emissions you want to include. Typically Scope 2 (electricity) is included, and material Scope 1 emissions (on-site combustion or direct emissions). Selected Scope 3 emissions may also be included, such as upstream emissions associated with energy usage and waste.

Units of measure:

The unit for reductions or savings to be modelled will typically be tonnes of greenhouse gas emissions, or a unit of energy, such as kilowatt-hours or megajoules.

What greenhouse gas reduction measures are considered in abatement pathways?

For most organisations greenhouse gas reduction measures usually relate to six high-level carbon abatement areas as shown in Figure 1 below, being

  • Energy efficiency
  • Management of waste and other Scope 3 emissions sources
  • Sustainable transport
  • Local generation of renewable energy such as rooftop solar PV
  • Grid decarbonisation
  • Buying clean energy and/or carbon offsets

These high-level categories can be further broken down into as many subcategories as relevant within your selected organisation boundary.

Figure 1: 6 categories for carbon reduction opportunities

The need for a graphical representation of emissions pathways

For many people, it is hard to engage with complex data presented in a table or report. In our experience, it is most effective if abatement potential can be shown in a graph. The visual representation of a carbon abatement pathway allows people to better grasp the overall opportunity for abatement, where this will come from, and the timeframes involved.

It also helps organisations to better communicate their plans to their stakeholders, be they internal or external. Simple and well-presented graphics can also help when seeking decisions to budget for and implement cost-effective measures.

5 ways to graphically represent emission reduction pathways

There are many different ways you can display an emissions reduction pathway; some are more suited to specific circumstances than others. The five examples we are using in this blog post are:

  1. Line chart
  2. Waterfall chart
  3. Area chart
  4. Column chart
  5. Marginal Abatement Cost Curve (MACC)

Let’s look at these examples in detail.



Example #1 – line chart

A line chart is a simple but effective way to communicate a ‘Business-as-usual’ or BAU pathway compared with planned or target pathways at a total emissions level for your selected boundary. Such a boundary could be comparing your whole-business projected emissions with and without action to reduce greenhouse gases.

This type of graph is also useful to report on national emissions compared with required pathways to achieve Australia’s Paris commitments, for example.

Figure 2: Example of a line chart

Example #2 – waterfall chart

A waterfall chart focuses on abatement measures. It shows the size of the abatement for each initiative, progressing towards a specific target, such as 100% renewable electricity, for example. It is most useful to highlight the relative impact of different actions, but it does not show the timeline of implementation.

Figure 3: Example of a waterfall chart

Example #3 – area graph

Area graphs show the size of abatement over time and are a great way to visualise your organisation’s potential pathway towards ambitious emissions reduction targets.

They do not explicitly show the cost-effectiveness of measures. However, a useful approach is to include only measures that are cost-effective now and will be in the future, so that decision-makers are clear that they are looking at a viable investment plan over time to lower emissions.

Figure 4: Example of an area chart that shows reduction actions and diminishing emissions

Another option of displaying an area chart is shown in Figure 5. In this area chart, the existing emission sources that reduce over time are not a focus, and instead, the emphasis is on emission reduction actions. You may prefer this version if there is a large number of reduction measures, or if you include fuel switching actions.

Figure 5: Example of an area chart which emphasises emission reduction actions



Example #4 – column graph

A column graph is similar to the area graph but allows for a clearer comparison between specific years compared with the continuous profile of an area graph. In the example column graph below, we are looking at Scope 1 and Scope 2 emissions, as well as abatement in an organisation over a 25-year timeframe covering past and future plans.

In the historical part, for instance, we can see Scope 1 (yellow) and Scope 2 (blue) emissions in the baseline year. The impact of GreenPower® (green) on emissions can be seen in any subsequent year until 2018.

Going forward we can see in any projection year the mix of grid decarbonisation (red), new abatement measures (aqua) including fuel switching and renewables purchasing, as well as residual Scope 1 and 2 emissions.

Figure 6: Example of a column chart

Example #5 – Marginal Abatement Cost (MAC) Curve

MAC curves focus on the financial business case of abatement measures and the size of the abatement. MAC curves are typically expressed in $/t CO2-e (carbon), or in $/MWh (energy), derived from an assessment of the net present value of a series of investment over time to a fixed time in the future.

The two examples below show MAC curves for the same set of investments across an organisation. Figure 6 shows the outcome in 2030, whereas, in Figure 7, it is to 2040 when investments have yielded greater returns.

MAC curves are a good way to clearly see those investments that will yield the best returns and their contribution to your overall emissions reduction goal.

Figure 7: Example of a Marginal Abatement Cost curve with a short time horizon

Figure 8: Example of a Marginal Abatement Cost curve with a longer time horizon

Please note that no one example is superior over another. It depends on your preferences and what information you would like to convey to your stakeholders.

100% Renewables are experts in putting together emission reduction and renewable energy pathways. If you need help with determining your strategy, targets and cost-effective pathways, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Shrinking your combined load profile [includes video]

In June, Barbara, our Co-CEO, presented at the Renewable Cities Australia conference at the International Convention Centre in Sydney. The topic of her talk was ‘Reaching ambitious energy efficiency and renewables’.

At the core of her speech was a demonstration of how the combined load profile of a typical metropolitan local council changes after the implementation of energy efficiency and onsite renewable energy.

Please note that a video of the ‘shrinking load profile’ is included at the bottom of this post.

What is a load profile?

A load profile shows how your energy demand changes over a 24-hour period, from meter data that your energy retailer can provide on request or via a web portal linked to your account.

Meter data starts and ends at midnight and is usually in half-hour or 15-minute intervals. The vertical axis shows your energy demand in kilowatts as it changes over this time. The less your energy demand, the lower the curve.

A load profile can also be called ‘interval data’ and is a very useful tool for analysing your energy consumption. For example, a load profile can identify equipment that is running unnecessarily at night or may show you spikes in your energy consumption that hint at inefficient operation of equipment. Changes in your profile from summer to spring or autumn can give you an idea of the energy use needed for cooling in a building.

You use load profiles to help you identify how you can be more energy efficient, and they can also help you to size your solar PV installation.

What is a combined load profile?

A combined load profile adds the demand for all your sites to show you the overall energy demand of your organisation. This information is particularly important when you buy energy via a renewable energy Power Purchase Agreement that is supply-linked.

Building up a combined load profile

In this blog post, we build a combined load profile for a metropolitan local government. Figure 1 shows the combined demand of small sites, like small libraries, amenities blocks, community halls and childcare centres.

Energy demand typically rises sharply in the morning as people start to use these facilities, and it falls as people leave them in the evening. At night there is usually demand for appliances, small servers and emergency and exit lights.

Figure 1: The energy demand of small sites



Now, we are adding the electricity demand for large sites on top of the small sites. Examples for large sites are central administration offices & chambers, depots and aquatic centres. Night demand for depots and offices may be low with good after-hours controls. However, pools are usually heated all the time and can be energy-intensive at night.

Figure 2: The energy demand of large sites

The surprising thing for metropolitan councils is that most of the energy demand happens at night, through streetlighting, which runs from dusk until dawn. Streetlights can consume as much as half of a metropolitan council’s electricity! This creates a combined profile with high demand at night and a big dip in demand during the day.

Figure 3: The energy demand of streetlighting

Lastly, we add parks and sporting fields. Most of the energy demand for sporting fields is lighting and irrigation, so naturally, this demand also occurs from late in the evening (sporting field lights) to early morning (irrigation).

Figure 4: The energy demand of parks, ovals and fields

The impact of onsite energy efficiency and renewable energy measures on the combined demand profile

Now that we have a load profile that aggregates energy demand across all sites, let’s implement onsite abatement measures such as energy efficiency and solar PV.

So that you can see the impact of these measures, we are providing a visual cue to show you where our starting line is, because now we start subtracting.

Figure 5: Implementing onsite measures



Energy efficient lighting for parks and sporting fields

LED lighting replacements and smart controls for parks, ovals and fields can lead to a 40-70% reduction in energy demand. At the same time, you may improve your service provision through better lighting, more activated fields and higher utilisation. The net benefit is shown in Figure 6. A reduction in energy demand brings down the whole load profile from the starting point.

Figure 6: Lighting replacement for parks, ovals and fields

Figure 7 shows the impact of a bulk upgrade to LED lighting for local roads. LED streetlights are 60-80% more energy efficient than older technologies such as Compact Fluorescents or Mercury Vapour.

Figure 7: Streetlighting upgrade for local roads

Figure 8 shows the impact of a bulk upgrade to LED lighting for main roads, with similar levels of savings as local roads. Smart controls such as dimming can further increase savings for streetlights.

Figure 8: Streetlighting upgrade for main roads

Implementing energy efficiency improvements to lights, air conditioning, IT systems, appliances, motor systems and building controls at your facilities can achieve at least a 10% reduction, but more might be achievable. It depends on your individual circumstances and what measures you have implemented in the past.

Figure 9: Energy efficiency at Council sites

Installing onsite solar PV

Figure 10 shows the impact of installing onsite solar PV at your sites. You can see the dip in the load profile in the middle of the day, as the solar energy generation reaches its maximum.

Figure 10: Impact on Solar PV

Battery storage will allow further savings in your electricity and peak demand. Figure 11 illustrates how stored solar energy can reduce a building’s peak demand in the afternoon when peak demand charges might apply, thus reducing power bills.

Figure 11: More Solar PV and battery energy storage



What the load profile was and what it could be

So, we have implemented a number of cost-effective efficiency and renewable energy measures, and we can see that demand has reduced significantly. Figure 12 shows what the load profile looked like before implementation of any actions, and what it could be through energy efficiency and onsite solar PV.

Before you think about switching your electricity supply to offsite renewables (e.g. through a Power Purchase Agreement), you should consider the changes behind-the-meter measures like energy efficiency and solar PV can make to your energy demand, and how this can lower the amount of energy you need to buy over time.

Figure 12: Summary of what load profile is and what it could be

Switching your electricity supply to renewables

Figure 13 shows what remains of your original load profile. The next step will be to switch from conventional electricity supply to 100% renewable energy. This can be staged over time or may be possible all in one go.

Figure 13: Offsite opportunities like PPAs

Goals achieved!

In our experience, by implementing onsite energy efficiency and renewable energy measures, you can save 30-40% in electricity demand. By switching your supply to renewables, you can also achieve 100% renewable energy.

Figure 14: Goals Achieved!

You can watch a video of the shrinking load profile here:

Would you like to see how much you could reduce your load profile?

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with analysing your load profile and with developing your renewable energy plan, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Challenges with achieving ambitious targets

Challenges with ambitious targets
Challenges with ambitious targets

In part 1 of the blog series, we investigated what the scope of your climate change target could be. In part 2, we looked at the global and national goals you should be aware of. In this blog post, we will shed light on some of the challenges that you may face when setting ambitious goals.

Striking a balance

Setting targets is often about striking a balance between what we know can be achieved with today’s commercially available solutions and what will be available in coming years.

This is why many targets for renewable energy, for example, are 100% by 2030. It is expected that battery storage for solar and renewable energy sourcing for energy supply will be readily available and cost-effective by that time.

Interim targets tend to focus on onsite measures that are known to be cost-effective now, such as energy efficiency and solar panels.

Challenges with achieving ambitious targets

In our experience, both interim and ambitious long-term targets can present challenges for you. Here is a list of some of those challenges.

Ongoing internal support, resources and funding

This is often the most common barrier and challenge; how to gain and sustain the support and funds internally to make efficiency and renewable energy initiatives happen. There are usually limited funds, competing priorities and resources are stretched.

Without internal support at senior level as well as people to develop business cases and implement projects, most programs do not last or succeed.

Strategy tips:

  1. One or a few key staff and managers who want to see continued action on renewables and emissions reduction, and make it a priority on an ongoing basis.
  2. Having clear financing strategies for renewables, efficiency and other emissions reduction measures, including awareness of state and federal incentives such as the Energy Saving Scheme and the Renewable Energy Target, a consideration to fund from Capex or a loan, revolving energy funds or similar.
  3. Alignment of renewable energy and emissions reduction plans with your organisation’s strategy so that this is embedded in your organisational priorities.

Understanding electricity markets and your energy purchasing processes

Energy procurement will most likely deliver the bulk of your organisation’s ambitious renewable energy goals, so without a plan, you may not be able to achieve an ambitious renewable energy goal ahead of the ‘greening’ of the grid.

The ability to meet an ambitious renewable energy goal cost-effectively is heavily influenced by how you source electricity from the market. Whereas in the past, GreenPower® was available, but at a cost premium, many organisations are now able to source energy from renewable energy projects at similar or even lower cost than conventional power.

Strategy tips:

In this rapidly evolving environment, you need to take time to understand how the electricity market and renewables procurement work and develop your energy sourcing strategy accordingly. In particular, investigate the following aspects of energy procurement:

  • The current and future electricity and renewable energy market
  • Contract terms for renewable energy supply
  • Types of contracts for renewable energy purchasing
  • Interest in collaboration or partnering for volume to achieve better pricing are all aspects of energy procurement

Transport and waste

Transport and waste can be sources of large carbon emissions. However, solutions to achieve step-change in energy demand, renewable energy or carbon emissions can be limited, particularly if your organisation is already focusing on emission reduction in these areas.

In our experience, the level of focus on carbon emissions and renewables for these sources is low or lags the focus that is applied to electricity and stationary gas. This often leads to the omission of these sources from targets.

An emerging aspect of this is the potential for electrification of vehicles to change electricity demand and thus increase the amount of renewable electricity that needs to be sourced to meet ambitious targets. Some organisations are beginning to assess their future energy demand with an EV fleet and incorporate this into their long-term forecasts.

Strategy tips:

Consider including transport and waste in future targets if they are not already part of your goal. Make sure that you apply appropriate resources to understand opportunities and future trends.

The emergence of electric vehicles will introduce new challenges for the identification of new opportunities. A good strategy is to forecast what changes will occur and when. This may not be a significant factor for the next 4-5 years but will almost certainly be a more important issue as we approach 2030.

Organisational growth

While you are implementing efficiency and renewables, your energy demand may grow with organisational growth. Your emissions intensity may reduce, but your absolute emissions may still be growing.

Strategy tips:

The greater the level of organisational support and understanding of the nature, scale and timing of opportunities, as well as an understanding of the type and scale of changes that will occur to your assets over time helps to set targets that are realistic and achievable.

You need to take these changes into account so you know what combination of emission reduction options can help you meet your target in the most cost-effective way.

Conclusion

You may find you have only achieved a small part of your goal after a few years, despite the fact you have progressed several onsite solar and energy efficiency projects. Often, building energy efficiency and onsite solar can deliver part of the solution, but each project is individually small.

This is beginning to change with cheaper solar panels making larger-scale systems cost-effective, which in turn has a greater impact on emission reduction and onsite renewable energy generation.

The overall effort towards ambitious goals is likely to include a small number of measures that have individually significant impact (e.g., a renewable energy PPA), plus a large number of small measures that have low impact but are good for the bottom line.

Your strategy to meet ambitious targets should include both these measures.

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with developing a target and action plans that help you meet this target, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

How choosing a target influences your emissions over time [with video]

100% RE - emission reduction through 100% renewable energy
100% RE – emission reduction through 100% renewable electricity

We recently worked with a regional council to provide their senior management and other key stakeholders with input to the development of their climate change action plan and target-setting process.

An important part of our work was to show council, based on our experience with many other local governments, what different carbon reduction scenarios look like in this sector. In particular, we showed what a no-action scenario would mean for electricity demand, what a focus on demand reduction within council operations would look like, and what an approach that encompasses both aggressive demand reduction and a comprehensive renewable energy supply strategy could achieve.

Presenting and workshopping these scenarios helped our client to set ambitious goals for energy and carbon reduction that are achievable, affordable and can be planned and resourced in the short, medium and long term.

Three scenarios for electricity-based emissions

To illustrate how inaction and action to mitigate climate change can influence emission reductions over time, we created a series of animations. Please click on the video (< 4min) below to view the effect of energy efficiency and renewable energy measures on a council’s business-as-usual electricity consumption.

Scenario 1: no action

For most local councils, rising population, asset upgrades and service improvements are factors that influence the energy demand of council operations.

In the absence of clear policies and practices to reduce energy demand and increase renewables, these factors will lead to increased energy use. As electricity prices also rise, this will result in higher energy costs over time.

Scenario 2: action within council operations

In most organisations, there are numerous opportunities to reduce energy demand and increase onsite renewable energy.

  • Upgrading building lighting systems, air conditioning controls and installing rooftop solar panels usually have an attractive payback.
  • Incorporating lowest life-cycle cost technologies and solar into new developments, and implementing sustainable procurement policies for appliances and office/IT equipment can reduce or reverse energy growth over time.
  • Replacing capital-intensive equipment such as air conditioning systems, water & sewer pumping systems, sporting field lighting and servers with best-practice energy-efficient technologies can similarly reduce or reverse growth in energy demand.
  • Street lighting is often one of the largest energy-using accounts in a local council. As LED technology becomes available, local and main road lighting can be upgraded, leading to large energy savings.

Planning, scheduling and funding implementation of these opportunities over time will lead to a sustained and cost-effective reduction in a council’s grid energy consumption.

However, for most councils, these actions will only take climate mitigation so far, typically a 30% to 40% reduction over time. This would likely fall short of the 2018 IPCC report on ‘Global Warming of 1.5 ºC’, which states that we need to reduce global net anthropogenic CO2 emissions by about 45% from 2010 levels by 2030.

Scenario 3: ambitious action on energy demand and supply

In our experience, it is not possible for a council to achieve deep emissions cuts without focusing on both energy demand and energy supply. In an ‘ambitious action’ plan, there will be a more aggressive rollout of energy efficiency and renewable energy measures, as well as an energy procurement strategy that will source renewable energy for council’s operations.

Energy demand action will:

  • Extend solar PV to more marginal sites,
  • Develop a plan for larger-scale onsite solar with battery storage,
  • Incorporate smart controls with street lighting,
  • Plan for charging of electric vehicles over time, including passenger and commercial vehicles and road plant

Energy supply action will include renewable energy purchasing as part of a council’s normal energy procurement process. Typically, this takes the form of a renewable energy Power Purchase Agreement (PPA) as part of overall energy supply, with the potential to scale up renewable energy purchasing towards 100% over time.

For some councils, building their own solar farm may be another way to scale up supply-side action on renewables.

Ambitious action that focuses on both energy demand and renewable energy supply is aligned with global targets to decarbonise by mid-century. As leaders, local governments have an important role to play in showing their communities that deep cuts in emissions are possible and affordable.

You can read more about achieving ambitious targets in our ‘How to achieve 100% renewable energy’ paper.

Ambitious action is achievable and cost-effective

It is possible to achieve ambitious targets cost-effectively – what is required is to plan and resource ahead, to understand the cost implications as well as the cost savings, and to know what measures can be rolled out at what point in time.

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with setting targets that are achievable and cost-effective, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.