Tag Archives: energy efficiency

Act now – Government-funded support for energy-saving opportunities

Save money on energy by accessing free Government support

2020 is not an easy year for businesses. Many have been affected by drought, bushfires or flooding, and with the current Covid-19 pandemic, businesses are suffering further.

One of the highest costs after wages can be your energy consumption. This is where the Government-funded energy coaching program comes in. The NSW Government is providing funding for experts to visit your sites, provide expert energy support and to develop recommendations for how you can save money.

We have been working with NSW Dept of Planning Industry and Environment (DPIE) on their energy management coaching program for business for a few months and would like to inform our followers of this great opportunity.

Depending on the size of your energy consumption, you may be eligible for up to $35,000 in support.

How can you save money on energy?

Energy is wasted by utilising old technology and controls, leaving plant and equipment on when not in use, having sub-optimal temperature or process settings, or having reactive rather than preventative maintenance procedures. Often, energy waste occurs because there is insufficient time or resources to devote to manage energy effectively and plan for improvements.

We can help you identify where you are unnecessarily spending money and may even be able to help you apply for more funding to upgrade or replace equipment.

How much money is the Government making available?

Support for medium energy users

If your business spends at least $30,000 on electricity and gas in a year, then you may be eligible for 20 hours of one-on-one coaching.

Support for high energy users

There may be even more support if your business spends more than $500,000 annually. In this case, we will benchmark the energy performance of your business and help define a project that can improve your energy management.

Please note that even if you are spending more than $500,000 per year, you can access also the 20 hours of one-on-one coaching.

Are you eligible for this program?

Your business must be in NSW, have an ABN and be registered for GST. For medium energy users, you need to prove that you spend more than $30,000 per year on energy.

For high energy users, you need to show that you spend more than $500,000 per year on energy. Your organisation must also be in the mining, agriculture, or selected manufacturing sub-sectors, or have an annual energy usage above 3,000 MWh in any manufacturing sub-sector.

How does it work, and what will you need to do?

The NSW Government has appointed 100% Renewables Pty Ltd to a panel to help with delivering this program. Once you have determined whether you are eligible for this support, you will need to email us. For the businesses we can support, we will help you complete an application form and liaise with the Department to secure your participation in the program. Once you have been approved, we will arrange for a suitable time to visit your site, identify savings opportunities and develop business cases to support implementation.

Is there any cost involved?

There is no cost involved for your business for the 20 hours of one-on-one coaching. Originally, businesses had to co-fund energy coaching. However, in the current Covid-19 environment, this fee has been removed.

For high energy users, DPIE will provide up to $35,000 for us to help you implement the project, with your business funding 20% of total costs.

How to apply:

If you think your business could benefit from free energy-saving advice, please send an email to patrick@100percentrenewables.com.au or call Patrick at 0408 413 597. Please include the following details:

  1. Name and address of your business
  2. Describe your main business activity
  3. Your contact details
  4. How much you spend on energy in a year
  5. Two recent bills for electricity and gas, if applicable

100% Renewables are experts in helping organisations develop their climate change strategies and action plans, and supporting the implementation and achievement of ambitious targets. If you need help to develop your Climate Change Strategy, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

 

The importance of energy efficiency in reaching net zero emissions

As part of the Paris Agreement, we need to limit global warming to well below 2 degrees Celsius, which means that we need to reach zero net emissions from the second half of this century.

Energy efficiency means to either perform the same activity with less energy input or accomplish more activity with the same amount of energy input. Either way, you achieve more with each unit of energy consumed.

Think of energy efficiency as the cheapest and cleanest fuel you can use, as it is measured and valued as the quantity of energy you do not use. The higher the price you pay for your electricity, the greater the value to being more productive with your energy input.

Apart from saving you money, improving energy efficiency means that your renewable energy needs will be smaller, which can make your journey to net-zero emissions less expensive. It also reduces the environmental impact of manufacturing, transporting, and installing renewables.

You can improve energy efficiency by implementing procedural changes, engaging staff, and retrofitting and upgrading equipment. Energy is wasted by leaving appliances and equipment on when not in use, having inadequately controlled temperature or process settings, using old technology, having poor maintenance procedures, or by staff not being aware of the correct operation of equipment.

Examples of retrofitting or upgrading equipment include:

  • lighting replacements
  • improving building envelopes to reduce heating and cooling energy demand
  • optimising or upgrading the HVAC system, lighting sensors and timers
  • re-engineering manufacturing processes or implementing new process technology
  • implementing metering and monitoring processes
  • installing variable speed drives on motors used to drive equipment, like fans and pumps

Even the largest and most sophisticated energy users can find additional opportunities for cost-effective energy savings.

One of the best ways to uncover energy efficiency opportunities is to undertake an energy audit. Energy audits can be a bit daunting, and it helps to engage experts. While in the past, we used to perform energy audits onsite, we have now adjusted our business processes so that we can deliver a seamless online experience for our customers.

Using technology, our virtual energy audits will save you time, money and upskill your staff, while our carbon footprint is also reduced. We will shortly publish a video that shows how virtual energy audits work.

Covid-19 is forcing many businesses to look at reducing costs where they can. An energy audit will achieve cost savings, not only in the short but also in the medium and longer-term. To see if you have opportunities to save money by not wasting energy, contact Barbara or Patrick.

Focusing on energy efficiency can be a cultural shift for many organisations, and implementing these changes can take time. We recommend implementing an Energy Management System, like ISO 50001, which works for all organisations, regardless of size, industry, or location, to embed an ongoing culture of energy management and efficiency within your organisation.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

NSW Net Zero Plan Stage 1: 2020 – 2030

Key highlights

100% Renewables welcomed the Department of Planning, Industry and Environment’s Net Zero Plan Stage 1: 2020–2030[1], released on 14 March this year, along with the release of two additional Renewable Energy Zones in regional NSW.

While the Plan’s release has been understandably overshadowed by the Covid-19 global pandemic, it is nonetheless a big milestone that sees the first of three clear, 10-year plans released that will set a pathway to net zero emissions by 2050.

It takes an aspirational 30+ year goal and brings it back to tangible actions, cross-sectoral measures, and a range of funded programs that will help governments, business and householders in NSW play their role in moving NSW to a low carbon economy.

From our reading of the Plan, there are a number of key highlights:

  • Action is grounded in science and economics, and a central focus of the Plan is about jobs that will be created and about the lowering of energy costs for consumers. Emissions reductions are a by-product of good investments in new technologies over the long term that boosts overall prosperity. Too much of the negative commentary on decarbonisation is about jobs that will be lost, and more focus is needed on the jobs that will be created, what they will be, and importantly where they will be.
  • We already have many of the technologies to drive significant abatement. Investing in breaking down barriers to these technologies is the simplest and shortest path to accelerating investment in these technologies, like:
    • energy-efficient appliances and buildings,
    • rooftop solar panels,
    • firmed grid-scale renewables,
    • electric vehicles and
    • electric manufacturing technologies.

Electrification and switching to renewables are core short, and medium-term decarbonisation strategies of many of our clients and this focus can help accelerate this transition.

  • The Plan provides certainty to investors that NSW is a place to invest in renewable energy, efficient technologies and sustainable materials. It also signals that NSW aims to lead in the development of emerging technologies that create new opportunities, whilst being flexible to re-assess and re-prioritise efforts during the Plan period.
  • Reducing our emissions by 35% by 2030 and to net-zero by 2050 is a shared responsibility, and the Plan clearly sets out the expectation that all business sectors, individuals and governments must play their part.

  • A broadening of the focus of abatement efforts to encompass low-carbon products and services, integrating these into existing and new initiatives, and providing consumers with more information to influence decisions is welcome.
  • Clarity on some of the funding, targets and programs that will help drive this change, such as:
    • $450 million Emissions Intensity Reduction Program
    • $450 million commitment to New South Wales from the Climate Solutions Fund
    • $1.07 billion in additional funding via both NSW and Commonwealth Governments in a range of measures
    • Development of three Renewable Energy Zones in the Central-West, New England and South-West of NSW to drive up to $23 billion in investment and create new jobs
    • Establish an Energy Security Safeguard (Safeguard) to extend and expand the Energy Savings Scheme
    • Expanded Energy Efficiency Program
    • Expanded Electric and Hybrid Vehicle Plan with the Electric Vehicle Infrastructure and Model Availability Program to fast-track the EV market in NSW
    • Primary Industries Productivity and Abatement Program to support primary producers and landowners to commercialise low emissions technologies
    • Target of net-zero emissions from organic waste by 2030
    • Development of a Green Investment Strategy, with Sydney as a world-leading carbon services hub by 2030
    • Enhancement of the EnergySwitch service by allowing consumers to compare the emissions performance of energy retailers
    • Advocate to expand NABERS to more building types, and improve both the National Construction Code and BASIX
    • Establishment of a Clean Technology Program to develop and commercialise emissions-reducing technologies that have the potential to commercially out-compete existing emissions-intense goods, services and processes
    • Establishment of a Hydrogen Program that will help the scale-up of hydrogen as an energy source and feedstock, and the setting of an aspirational target of up to 10% hydrogen in the gas network by 2030
    • Aligning action by government under GREP with the broader state targets through clear targets for rooftop solar, EVs, electric buses, diesel-electric trains, NABERS for Government buildings, power purchasing and expansion of national parks

We believe that the Net Zero Plan Stage 1: 2020–2030 is a good start in the right direction for NSW. We are looking forward to helping NSW organisations to set and reach their renewable energy and abatement goals, and to avail of available information, support and incentives that help them achieve their goals.

We will be keeping track of the Plan as it is rolled out and evolves over time, and will keep clients informed about opportunities that are aligned with their needs and objectives.

[1] © State of New South Wales 2020. Published March 2020

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with developing emission scenarios that take into account policy settings, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

How Randwick Council achieved >40% energy savings at Lionel Bowen Library

100% Renewables has helped many organisations to set ambitious renewable energy and carbon reduction goals and developed the strategies and action plans that will help them get there. While this is one key metric for our business, a greater measure of success is when we see clients implement projects that will take them towards their targets. In this blog post, we showcase measures implemented by Randwick City Council to significantly reduce the energy demand and carbon footprint of the Lionel Bowen Library in Maroubra, Sydney.

Randwick City Council’s climate change targets and plan

Randwick City Council has set a number of ambitious environmental sustainability targets for its operations, including targets for reduced greenhouse gas emissions. In March 2018, Council adopted the following targets:

  • Greenhouse gas emissions from Council’s operations – net zero greenhouse gas emissions by 2030, including but not limited to the following measures:
    • Council’s total energy consumption – 100% replacement by renewable sources (generated on site or off-site for Council’s purposes) by 2030.
    • Council’s vehicle fleet – net zero greenhouse gas emissions by 2030.

Energy eficiency is a key strategy for achieving these goals, as set out in the 100% Renewable Energy Roadmap completed in early 2020.

Lionel Bowen Library energy use and solar

The Lionel Bowen Library is one of Council’s largest energy-using facilties, consuming 7.8% of Council’s total electricity demand in 2017/18. This was after the implementation of a 30 kW solar panel array on the roof of the library in 2013, as well as efficiency measures including VSD control of the cooling tower fan and voltage optimisation of the main incoming supply. The solar array generates 40,000 kWh of renewable energy each year, which is fully consumed within the library.

Lionel Bowen Library solar installation, Randwick City Council (photo by Patrick Denvir)
Lionel Bowen Library solar installation, Randwick City Council (photo by Patrick Denvir)

New energy efficiency projects at Lionel Bowen Library

Concurrent with the development of Council’s 100% Renewable Energy Roadmap, Randwick initiated a project to roll out LED lighting at selected sites, including the library. A multi-faceted process included the

  • development of the business case to secure internal support and approval,
  • selection of a preferred supplier,
  • implementation of a trial ‘LED space’ and measurement of light and energy savings as well as visitor perceptions of the upgraded space,
  • influencing key internal stakeholders to support the whole-facility rollout,
  • implementation including claiming the Energy Saving Certificates (ESCs) for the project, and
  • measurement of the energy savings.

During the development of the 100% Renewable Energy Roadmap it was observed that after-hours control of several of the library’s air conditioning systems was not working effectively. In addition, a storeroom fan system in the basement of the building was observed to be running continuously.

Consultation with facilities management staff indicated that faulty BMS controllers meant that time schedules as well as after-hours controls were not correct, and quotes would be sought for new timers to rectify this. Quotes for a new timer for the storeroom fan system were also sought.

In late 2019, the new time control measures were implemented, with significant immediate energy savings identified in load data for the library. The combined impact of the LED lighting and air conditioning system control changes has been to reduce the library’s electricity consumption by nearly 40% when comparing similar periods of 2017/18 with energy consumption in early 2020. This saving is illustrated below in two charts.

  • The first chart shows monthly electricity consumption from June 2018 through to February 2020, with the steep downward trend in monthly electricity use evident.
Monthly electricity consumption - June 2018 to February 2020, Bowen Library
Monthly electricity consumption – June 2018 to February 2020, Lionel Bowen Library
  • The second chart shows daily load profile data and clearly illustrates the impact of the air conditioning timer upgrade on night energy demand between November and December 2019.
Load profile - Nov vs Dec 2019, Bowen Library
Load profile – Nov vs Dec 2019, Lionel Bowen Library

Future savings initiatives at Lionel Bowen Library

There are plans to implement additional measures at the library that will see even more energy savings achieved and more renewable energy. These new measures are set out in Council’s 100% Renewable Energy roadmap and include:

  • Installation of a further 30-45 kW of solar PV on the roof of the library which will be absorbed on site.
  • Progressively upgrade the main and split air conditioning systems in the library (which have reached the end of their economic life) with energy efficient systems. This will have the added benefit of removing R22 refrigerant from the library and seeing a switch to a lower-GWP refrigerant. Opportunities to implement VSD control of fans and pumps, and to optimise supply to unused or infrequently used spaces will also be assessed.
  • Implement new BMS controls for new air conditioning plant as this is upgraded.

The combined impact of these changes over time could be a reduction in grid electricity supply to Lionel Bowen Library of 60% compared with 2017/18 electricity consumption.

Progressing towards its emissions reduction target

The energy saving measures implemented at Lionel Bowen Library are just a few among nearly a hundred actions that, when implemented over the next several years will see Randwick City Council realise its goal to reach net zero greenhouse gas emissions by 2030.

pdf-iconCase study “How Randwick Council achieved >40% energy savings at Lionel Bowen Library”
Start Download

Randwick City Council is one among many leading councils showing that achieving ambitious renewable energy and carbon reduction goals is both feasible and cost effective. 100% Renewables is proud to have played a role in helping this leader through the development of their 100% Renewable Energy Roadmap. We look forward to council’s continued success in reaching their renewable energy targets in coming years.

 

100% Renewables are experts in helping organisations develop their climate change strategies and action plans, and supporting the implementation and achievement of ambitious targets. If you need help to develop your Climate Change Strategy, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Clear the Air BCSD Australia Summit

Last Tuesday 11th February 2020, 100% Renewables attended the Business Council for Sustainable Development (BCSD) Australia’s Clear the Air Australian Climate Action Summit, held at Parliament House in Canberra. The event was hosted in partnership with the Crawford School of Public Policy at the Australian National University (ANU), and was an opportunity to take stock of where we are as a country and within major sectors of the economy in terms of our response to the challenges of climate change.

Business Council for Sustainable Development (BCSD) Australia’s Clear the Air Australian Climate Action Summit, held at Parliament House in Canberra
Business Council for Sustainable Development (BCSD) Australia’s Clear the Air Australian Climate Action Summit held at Parliament House in Canberra

Some of the key take-outs we took from the 1-day conference were:

  • IKEA’s Australia / New Zealand CEO Jan Gardberg, is also the company’s Chief Sustainability Officer (CSO), highlighting that sustainability is central to business success. Jan noted “it’s a win win win to go all in on sustainability”, and IKEA’s rapid progress towards a circular business by 2030 is evidence of the company’s leadership and commitment. IKEA’s plans to launch home solar and battery storage at their stores during 2020 will also help their customers to accelerate their shift to a more sustainable society.
  • “Switch to renewable energy”, “electrify everything” remain two of the key and achievable ‘pillars’ in the deep decarbonisation of the Australian economy by mid-century, as highlighted by a panel including ClimateWorks Australia’s CEO Anna Skarbek and ANU’s Professor Frank Jotzo. Even under a no-policy scenario most of Australia’s power will come from renewables within a couple of decades. Electrification of heat and transport are challenging but developing rapidly.
  • Energy efficiency and energy productivity represent ongoing challenges, despite the fact that these measures can deliver a large chunk of Australia’s required decarbonisation at negative cost! Despite huge steps made by the commercial building sector, significant challenges remain to improve the efficiency of our residential building stock – both existing buildings and new construction, as highlighted by Luke Menzel, CEO of the Energy Efficiency Council. In the manufacturing sector, the Australian Alliance to Save Energy’s Jon Jutsen highlighted the fact that just 15% of energy generated actually performs useful work and services, and the A2SE’s goal to double our energy productivity by 2030 would have huge benefits for manufacturing and other sectors.
  • Lastly, the ACT’s Minister for Climate Change and Sustainability Shane Rattenbury spoke of the Territory’s continuing work to decarbonise the ACT, having achieved their target to be 100% renewables for electricity. The Minister noted that in committing to source electric vehicles (EVs) for new ACT Government fleet, the simple step of increasing their lease terms from three to four years was key in making the business case stack up. The ACT is already seeing huge drops in operating costs for EVs. The Minister also highlighted the ‘ambassadorial effect’ of EVs, where their use across the ACT often generates discussion between users and the public.

An overarching message is that accelerated action on climate change needs to be the new business-as-usual and already is for some businesses, many of the solutions are already viable and others are rapidly emerging, and most importantly leadership is critical to success. And don’t forget energy efficiency and productivity, which will boost your bottom line.

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with developing emission scenarios that take into account policy settings, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Developing the Renewable Energy Plans for Temora and Cowra Councils

Site visits to Temora and Cowra Councils

Last week, Barbara and I undertook site visits in Temora and Cowra. We spent two and a half days at each location to identify renewable energy and energy-saving projects to save energy and cost.

Temora Shire Council

We are working with Temora Shire Council in Western New South Wales to develop their Renewable Energy Master Plan. Temora is a regional council who are part of the New South Wales Government’s Sustainable Councils and Communities Program.

Barbara and I spent two and a half days visiting Temora Shire Council’s major facilities and looked at energy efficiency and renewable energy opportunities. With a prolonged drought in NSW, it is great that Council has a recycled water system which is used to water parks and gardens in Temora.

It was also fantastic to discuss potential opportunities with Council’s engineering manager who wants to see more renewables and energy efficiency implemented across Council.

The council has already installed three solar PV systems and will shortly install a further two systems. We hope through this holistic view across Council to help Temora implement another 10 or 15 projects over the next few years, including larger-scale solar projects with battery storage. Council is also planning to upgrade all of its street lighting to new energy-efficient LED technology. As part of our work, we will help to ensure that the Council gets access to Energy Saving Certificates (ESCs) which can reduce the cost of the project.

The council is also interested in low emissions and electric vehicles for their fleet going forward. At the moment, there are no public charging stations within the Shire, but it’s possible that this may change in Temora in the near future.

It is fortunate that Temora Shire Council is a sister council to Randwick City Council in Sydney, for we developed a Renewable Energy Roadmap to help them meet their Council’s commitment to reach 100% renewables by 2030. Urban and Regional partnerships are a great way for learning, experiences and policies to be shared so that everyone benefits, and with both Councils heading in the same direction this will undoubtedly be the case here.

Cowra Shire Council and CLEAN Cowra

We also visited another regional council, Cowra Shire Council in Central West New South Wales. Cowra Council is part of New South Wales Government’s Sustainability Advantage Program. NSW and 100% Renewables have worked previously with Cowra Shire Council to develop a high-level sustainability strategy.

Barbara and I spent two days looking at all of council’s major wastewater and water sites, aquatic centres and buildings to identify opportunities that will inform the development of a renewable energy plan for Cowra Shire Council for the next several years. This work will continue into 2020.

CLEAN Cowra

As part of this work, Sustainability Advantage also engages with a not-for-profit organisation called CLEAN Cowra. CLEAN Cowra is establishing a local, innovative energy generation project that will create and use renewable biogas to generate clean energy, provide heat to local businesses and create saleable green gas, as well as a range of other environmental and business benefits.

Our work at this stage is looking at the thermal energy requirements of industrial / manufacturing businesses in Cowra who may be part of the project, to help determine the heating demand that could be met by the renewable energy generation project.

 

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with developing your renewable energy strategy, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

 

5 ways of visualising emission reduction pathways

Many of our services involve the development of emission reduction pathways, which greatly enhance climate change action plans. In this blog post, we will show you 5 common ways to visually display such a pathway. Seeing these different illustrations can help you to shape how you would like to present your own organisation’s pathway towards a low carbon future.

Introduction

What are emission reduction pathways?

Emission reduction pathways allow for the easy communication of

  • where your organisation is currently at in terms of greenhouse emissions (or energy consumption)
  • where you can be through the implementation of reduction measures that are feasible and cost-effective over time
  • where you would be in the absence of any measures to reduce emissions

Pathways usually start with your selected baseline year and end at some point in the future, typically at 2030, or when agreed or proposed targets are to be met.

What do emission reduction pathways cover?

Boundary:

Your emissions boundary will typically consider three things:

  • The level of an organisation or region you want to assess in terms of emissions reduction. This could be a single site, an asset class (e.g. community buildings), a Division in an organisation, a whole organisation, a town or community, and up to State and National levels.
  • The emissions and energy sources that you want to evaluate. For example, electricity, natural gas, petrol, diesel, refrigerants, waste, wastewater and so on.
  • The Scopes of emissions you want to include. Typically Scope 2 (electricity) is included, and material Scope 1 emissions (on-site combustion or direct emissions). Selected Scope 3 emissions may also be included, such as upstream emissions associated with energy usage and waste.

Units of measure:

The unit for reductions or savings to be modelled will typically be tonnes of greenhouse gas emissions, or a unit of energy, such as kilowatt-hours or megajoules.

What greenhouse gas reduction measures are considered in abatement pathways?

For most organisations greenhouse gas reduction measures usually relate to six high-level carbon abatement areas as shown in Figure 1 below, being

  • Energy efficiency
  • Management of waste and other Scope 3 emissions sources
  • Sustainable transport
  • Local generation of renewable energy such as rooftop solar PV
  • Grid decarbonisation
  • Buying clean energy and/or carbon offsets

These high-level categories can be further broken down into as many subcategories as relevant within your selected organisation boundary.

Figure 1: 6 categories for carbon reduction opportunities

The need for a graphical representation of emissions pathways

For many people, it is hard to engage with complex data presented in a table or report. In our experience, it is most effective if abatement potential can be shown in a graph. The visual representation of a carbon abatement pathway allows people to better grasp the overall opportunity for abatement, where this will come from, and the timeframes involved.

It also helps organisations to better communicate their plans to their stakeholders, be they internal or external. Simple and well-presented graphics can also help when seeking decisions to budget for and implement cost-effective measures.

5 ways to graphically represent emission reduction pathways

There are many different ways you can display an emissions reduction pathway; some are more suited to specific circumstances than others. The five examples we are using in this blog post are:

  1. Line chart
  2. Waterfall chart
  3. Area chart
  4. Column chart
  5. Marginal Abatement Cost Curve (MACC)

Let’s look at these examples in detail.



Example #1 – line chart

A line chart is a simple but effective way to communicate a ‘Business-as-usual’ or BAU pathway compared with planned or target pathways at a total emissions level for your selected boundary. Such a boundary could be comparing your whole-business projected emissions with and without action to reduce greenhouse gases.

This type of graph is also useful to report on national emissions compared with required pathways to achieve Australia’s Paris commitments, for example.

Figure 2: Example of a line chart

Example #2 – waterfall chart

A waterfall chart focuses on abatement measures. It shows the size of the abatement for each initiative, progressing towards a specific target, such as 100% renewable electricity, for example. It is most useful to highlight the relative impact of different actions, but it does not show the timeline of implementation.

Figure 3: Example of a waterfall chart

Example #3 – area graph

Area graphs show the size of abatement over time and are a great way to visualise your organisation’s potential pathway towards ambitious emissions reduction targets.

They do not explicitly show the cost-effectiveness of measures. However, a useful approach is to include only measures that are cost-effective now and will be in the future, so that decision-makers are clear that they are looking at a viable investment plan over time to lower emissions.

Figure 4: Example of an area chart that shows reduction actions and diminishing emissions

Another option of displaying an area chart is shown in Figure 5. In this area chart, the existing emission sources that reduce over time are not a focus, and instead, the emphasis is on emission reduction actions. You may prefer this version if there is a large number of reduction measures, or if you include fuel switching actions.

Figure 5: Example of an area chart which emphasises emission reduction actions



Example #4 – column graph

A column graph is similar to the area graph but allows for a clearer comparison between specific years compared with the continuous profile of an area graph. In the example column graph below, we are looking at Scope 1 and Scope 2 emissions, as well as abatement in an organisation over a 25-year timeframe covering past and future plans.

In the historical part, for instance, we can see Scope 1 (yellow) and Scope 2 (blue) emissions in the baseline year. The impact of GreenPower® (green) on emissions can be seen in any subsequent year until 2018.

Going forward we can see in any projection year the mix of grid decarbonisation (red), new abatement measures (aqua) including fuel switching and renewables purchasing, as well as residual Scope 1 and 2 emissions.

Figure 6: Example of a column chart

Example #5 – Marginal Abatement Cost (MAC) Curve

MAC curves focus on the financial business case of abatement measures and the size of the abatement. MAC curves are typically expressed in $/t CO2-e (carbon), or in $/MWh (energy), derived from an assessment of the net present value of a series of investment over time to a fixed time in the future.

The two examples below show MAC curves for the same set of investments across an organisation. Figure 6 shows the outcome in 2030, whereas, in Figure 7, it is to 2040 when investments have yielded greater returns.

MAC curves are a good way to clearly see those investments that will yield the best returns and their contribution to your overall emissions reduction goal.

Figure 7: Example of a Marginal Abatement Cost curve with a short time horizon

Figure 8: Example of a Marginal Abatement Cost curve with a longer time horizon

Please note that no one example is superior over another. It depends on your preferences and what information you would like to convey to your stakeholders.

100% Renewables are experts in putting together emission reduction and renewable energy pathways. If you need help with determining your strategy, targets and cost-effective pathways, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Shrinking your combined load profile [includes video]

In June, Barbara, our Co-CEO, presented at the Renewable Cities Australia conference at the International Convention Centre in Sydney. The topic of her talk was ‘Reaching ambitious energy efficiency and renewables’.

At the core of her speech was a demonstration of how the combined load profile of a typical metropolitan local council changes after the implementation of energy efficiency and onsite renewable energy.

Please note that a video of the ‘shrinking load profile’ is included at the bottom of this post.

What is a load profile?

A load profile shows how your energy demand changes over a 24-hour period, from meter data that your energy retailer can provide on request or via a web portal linked to your account.

Meter data starts and ends at midnight and is usually in half-hour or 15-minute intervals. The vertical axis shows your energy demand in kilowatts as it changes over this time. The less your energy demand, the lower the curve.

A load profile can also be called ‘interval data’ and is a very useful tool for analysing your energy consumption. For example, a load profile can identify equipment that is running unnecessarily at night or may show you spikes in your energy consumption that hint at inefficient operation of equipment. Changes in your profile from summer to spring or autumn can give you an idea of the energy use needed for cooling in a building.

You use load profiles to help you identify how you can be more energy efficient, and they can also help you to size your solar PV installation.

What is a combined load profile?

A combined load profile adds the demand for all your sites to show you the overall energy demand of your organisation. This information is particularly important when you buy energy via a renewable energy Power Purchase Agreement that is supply-linked.

Building up a combined load profile

In this blog post, we build a combined load profile for a metropolitan local government. Figure 1 shows the combined demand of small sites, like small libraries, amenities blocks, community halls and childcare centres.

Energy demand typically rises sharply in the morning as people start to use these facilities, and it falls as people leave them in the evening. At night there is usually demand for appliances, small servers and emergency and exit lights.

Figure 1: The energy demand of small sites



Now, we are adding the electricity demand for large sites on top of the small sites. Examples for large sites are central administration offices & chambers, depots and aquatic centres. Night demand for depots and offices may be low with good after-hours controls. However, pools are usually heated all the time and can be energy-intensive at night.

Figure 2: The energy demand of large sites

The surprising thing for metropolitan councils is that most of the energy demand happens at night, through streetlighting, which runs from dusk until dawn. Streetlights can consume as much as half of a metropolitan council’s electricity! This creates a combined profile with high demand at night and a big dip in demand during the day.

Figure 3: The energy demand of streetlighting

Lastly, we add parks and sporting fields. Most of the energy demand for sporting fields is lighting and irrigation, so naturally, this demand also occurs from late in the evening (sporting field lights) to early morning (irrigation).

Figure 4: The energy demand of parks, ovals and fields

The impact of onsite energy efficiency and renewable energy measures on the combined demand profile

Now that we have a load profile that aggregates energy demand across all sites, let’s implement onsite abatement measures such as energy efficiency and solar PV.

So that you can see the impact of these measures, we are providing a visual cue to show you where our starting line is, because now we start subtracting.

Figure 5: Implementing onsite measures



Energy efficient lighting for parks and sporting fields

LED lighting replacements and smart controls for parks, ovals and fields can lead to a 40-70% reduction in energy demand. At the same time, you may improve your service provision through better lighting, more activated fields and higher utilisation. The net benefit is shown in Figure 6. A reduction in energy demand brings down the whole load profile from the starting point.

Figure 6: Lighting replacement for parks, ovals and fields

Figure 7 shows the impact of a bulk upgrade to LED lighting for local roads. LED streetlights are 60-80% more energy efficient than older technologies such as Compact Fluorescents or Mercury Vapour.

Figure 7: Streetlighting upgrade for local roads

Figure 8 shows the impact of a bulk upgrade to LED lighting for main roads, with similar levels of savings as local roads. Smart controls such as dimming can further increase savings for streetlights.

Figure 8: Streetlighting upgrade for main roads

Implementing energy efficiency improvements to lights, air conditioning, IT systems, appliances, motor systems and building controls at your facilities can achieve at least a 10% reduction, but more might be achievable. It depends on your individual circumstances and what measures you have implemented in the past.

Figure 9: Energy efficiency at Council sites

Installing onsite solar PV

Figure 10 shows the impact of installing onsite solar PV at your sites. You can see the dip in the load profile in the middle of the day, as the solar energy generation reaches its maximum.

Figure 10: Impact on Solar PV

Battery storage will allow further savings in your electricity and peak demand. Figure 11 illustrates how stored solar energy can reduce a building’s peak demand in the afternoon when peak demand charges might apply, thus reducing power bills.

Figure 11: More Solar PV and battery energy storage



What the load profile was and what it could be

So, we have implemented a number of cost-effective efficiency and renewable energy measures, and we can see that demand has reduced significantly. Figure 12 shows what the load profile looked like before implementation of any actions, and what it could be through energy efficiency and onsite solar PV.

Before you think about switching your electricity supply to offsite renewables (e.g. through a Power Purchase Agreement), you should consider the changes behind-the-meter measures like energy efficiency and solar PV can make to your energy demand, and how this can lower the amount of energy you need to buy over time.

Figure 12: Summary of what load profile is and what it could be

Switching your electricity supply to renewables

Figure 13 shows what remains of your original load profile. The next step will be to switch from conventional electricity supply to 100% renewable energy. This can be staged over time or may be possible all in one go.

Figure 13: Offsite opportunities like PPAs

Goals achieved!

In our experience, by implementing onsite energy efficiency and renewable energy measures, you can save 30-40% in electricity demand. By switching your supply to renewables, you can also achieve 100% renewable energy.

Figure 14: Goals Achieved!

You can watch a video of the shrinking load profile here:

Would you like to see how much you could reduce your load profile?

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with analysing your load profile and with developing your renewable energy plan, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Science-based targets in a nutshell

Target-setting in line with science

In 2015, close to 200 of the world’s governments committed to prevent dangerous climate change by limiting global warming to well below 2°C in the landmark Paris Agreement. However, total human-caused carbon emissions continue to increase. Under current trajectories, global mean temperatures are projected to grow by 2.2°C to 4.4°C by the end of this century.

Your organisation has a pivotal role in ensuring that the global temperature goals are met, but most existing company targets are not ambitious enough to achieve this.

What are science-based targets?

Science-based targets (SBT) are greenhouse gas emissions reduction targets that are consistent with the level of decarbonisation that is required to keep global temperature increase within 1.5 to 2°C compared to pre-industrial temperature levels.

SBTs are consistent with the long-term goal of reaching net zero emissions in the second half of this century as per the Paris Agreement. SBTs provide a trajectory for companies to reduce their greenhouse gas (GHG) emissions.

The Science-Based Targets initiative (SBTi)

The SBTi is a collaboration between CDP, the United Nations Global Compact (UNGC), World Resources Institute (WRI), and the World Wide Fund for Nature (WWF). The SBTi enables you to demonstrate your climate change leadership by publicly committing to science-based GHG reduction targets.

The overall aim of the initiative is that by 2020 science-based target setting will become standard business practice and corporations will play a major role in ensuring we keep global warming well below a 2°C increase.

Components for science-based target-setting methods

SBT target-setting methods are complex and should be considered in the context of your operations and value chains. Generally, science-based target-setting methods have three components:

  • Carbon budget (defining the overall amount of greenhouse gases that can be emitted to limit warming to 1.5°C and well-below 2°C),
  • An emissions scenario (defining the magnitude and timing of emissions reductions) and,
  • An allocation approach (defining how the carbon budget is allocated to individual companies).

Target setting approaches

There are three science-based target (SBT) setting approaches. As defined by SBTi:

  1. Sector-based (convergence) approach: The global carbon budget is divided by sector, and then emission reductions are allocated to individual companies based on its sector’s budget.
  2. Absolute-based (contraction) approach: The per cent reduction in absolute emissions required by a given scenario is applied to all companies equally.
  3. Economic-based (contraction) approach: A carbon budget is equated to global GDP, and a company’s share of emissions is determined by its gross profit since the sum of all companies’ gross profits worldwide equate to global GDP.

The SBTi recommends that companies screen available methods and choose the method and target that best drives emissions reductions to demonstrate sector leadership. You should not default to the target that is easiest to meet but should use the most ambitious decarbonisation scenarios and methods that lead to the earliest reductions and the least cumulative emissions.

An SBT should cover a minimum of 5 years and a maximum of 15 years from the date the target is publicly announced. Companies are also encouraged to develop long-term targets (e.g. out to 2050).

It is recommended that you express targets in both intensity and absolute terms, to track both real reductions in emissions and efficiency performance.

More information about the ‘absolute-based target setting’ approach

This method requires you to reduce their absolute emissions by the same percentage as required for a given scenario (e.g. globally or for a sector). Companies setting their SBT today would be strongly encouraged to adopt absolute abatement targets well in excess of 4% per year to be aligned with limiting warming to 1.5°C.

As an alternative to setting percentage reduction targets for Scope 2 emissions (electricity consumption), you can set targets for the procurement of renewable energy. Acceptable procurement targets are:

  • 80% of electricity from renewable sources by 2025, and
  • 100% of electricity from renewable sources by 2030.

If you already source electricity at or above these thresholds, you should maintain or increase your share of renewable electricity.



How to commit to and announce a science-based target

The following steps are required to commit to and announce an SBT.

  1. Commit to set a science-based target (internal)
  2. Develop a target (internal)
  3. Submit your target for validation (to SBTi)
  4. Announce the target (public)

Criteria for SBTs

To ensure their rigour and credibility, SBTs should meet a range of criteria.

  • An SBT should cover a minimum of 5 years and a maximum of 15 years from the date the target is publicly announced. You are also encouraged to develop long-term targets (e.g. up to 2050).
  • The boundaries of your SBT should align with those of your carbon inventory.
  • From October 2019 the emissions reductions from Scope 1 and 2 sources should be aligned with a 1.5°C decarbonisation pathway.
  • SBTs should cover at least 95 per cent of your Scope 1 and 2 emissions.
  • You may set targets that combine scopes (e.g., Scope 1+2 or Scope 1+2+3 targets).
  • The Scope 1 and 2 portion of a combined target can include reductions from both scopes or only from one of the scopes. In the latter case, reductions in one scope have to compensate for the other scope.
  • You should use a single, specified Scope 2 accounting approach (“location-based” or “market-based”) for setting and tracking progress toward an SBT.
  • If you have significant Scope 3 emissions (over 40% of total Scope 1, 2 and 3 emissions), you should set a Scope 3 target.
  • Scope 3 targets generally need not be science-based, but should be ambitious, measurable and clearly demonstrate how you are addressing the main sources of value chain GHG emissions in line with current best practice.
  • The Scope 3 target boundary should include the majority of value chain emissions; for example, the top three emissions source categories or two-thirds of total Scope 3 emissions.
  • The nature of a Scope 3 target will vary depending on the emissions source category concerned, the influence you have over your value chain partners and the quality of data available from your partners.
  • You should periodically update your SBTs to reflect significant changes that would otherwise compromise their relevance and consistency.
  • Offsets and avoided emissions do not count toward SBTs. The SBTi requires that you set targets based on emission reductions through direct action within your own boundaries or your value chains. Offsets are only considered to be an option if you want to contribute to finance additional emission reductions beyond your SBT.

Upcoming changes to submission of SBTs

In October 2018, the Intergovernmental Panel on Climate Change (IPCC) released its Special Report on Global Warming of 1.5 °C (SR15), which was the IPCC’s first major update since its Fifth Assessment Report (AR5) released in 2014.

The new report makes a very strong case about the benefits of limiting warming to 1.5°C and highlights the severe risks and impacts of reaching 2°C of warming. It provides new emissions pathways for limiting warming to 1.5°C and well-below 2°C.

Informed by SR15, in April 2019 SBTi released updated target validation criteria, target validation protocols, technical resources and tools to enable you to set targets in line with the level of decarbonisation needed to achieve the Paris Agreement.

This means that as of October 2019, the SBTi will no longer accept targets in line with 2°C. Existing targets in line with 2°C will continue to be valid and will be labelled as 2°C targets on the SBTi website.



Mandatory target recalculation

To ensure consistency with most recent climate science and best practices, targets must be reviewed, and if necessary, recalculated and revalidated, at a minimum every five years. If you have an approved target that requires recalculation, you must follow the most recently applicable criteria at the time of resubmission.

 

100% Renewables are experts in helping organisations develop their carbon reduction and renewable energy targets and pathways. Developing baselines, projecting your emissions and knowing how you can reach identified targets can be complex. If you need help, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Carbon accounting for the energy use of streetlighting

This blog post is relevant for Councils who want to make sure they are reporting the energy consumption of streetlights in their Local Government Area under the right carbon accounting scope.

This blog post assumes prior knowledge of carbon accounting. If you would like to find out more about how to develop carbon inventories, we highly recommend you download the GHG Protocol Corporate Accounting Standard, or talk to us about developing your carbon footprint.

The energy consumption of street lighting

Streetlighting is usually owned by network operators and is mostly unmetered. The Australian Energy Market Operator (AEMO) maintains the “National Electricity Market Load Tables for Unmetered Connection Points”, including street lighting. The NEM load tables list all tested street lighting devices, including their full wattage as tested in each state and territory in the NEM.

For every Local Government Area, network operators apply hours of operation (typically dusk to dawn) to the NEM load table wattage for all installed unmetered street lights to determine monthly electricity consumption.

Where street lighting is metered the Council will simply receive electricity bills that record the actual electricity consumed in each billing period.

The higher the power rating of a particular luminaire, the higher the energy consumption and the related charges. This is why it makes sense for Councils to consider bulk upgrades to LED lighting.

The carbon footprint of street lighting

Street lighting makes up a significant proportion of a Council’s carbon footprint, especially in metropolitan areas, where there are many streetlights. Upgrading to LED lighting makes sense from a financial perspective, but it also significantly lowers the carbon footprint of street lighting.

The carbon footprint of street lighting is made up of the energy consumption of the street lighting, as well as the transmission and distribution (T&D) losses in getting the energy from the power generators to the luminaires.

Accounting for street lighting from the network operator’s perspective

The energy consumption of the streetlights is classified as ‘Scope 2’ from the network operator’s perspective. The T&D losses are also classified as ‘Scope 2’ from the network operator’s perspective, as the network ‘consumes’ the electricity.

Accounting for street lighting from a council’s perspective

Under standard carbon accounting rules, one could assume that a council should classify street lighting as a Scope 3 emissions source to avoid double counting.

However, it depends on what approach is used to consolidate carbon emissions. According to the GHG Protocol Corporate Accounting Standard, there are two approaches: the equity share and the control approaches.

Under the equity share approach, a council would report street lighting under Scope 3 if the network operator owns the street lights.

However, if a council is using an ‘operational control’ approach in their carbon accounting, it comes down to the question of what entity has the ‘operational control’.

The answer to this question determines whether a council would classify the energy consumption of streetlights as a ‘Scope 2’, or as a ‘Scope 3’ emission.

Some councils believe that the network operator has control. Others view that council has operational control, for the following reasons:

  • council pays for the asset through amortisation of the capital expenditure and for O&M expenses including electricity, and
  • council can decide whether they want a lighting upgrade or not.

Examples of how councils report their street lighting energy use

The following table shows a small selection of councils and how they account for the electricity consumption of street lighting.

CouncilScope classification of energy consumption of street lighting
Brisbane City CouncilScope 2 for Council-controlled streetlights
Scope 3 for third-party controlled streetlights
City of SydneyScope 2 (network-owned streetlighting deemed to be within the City’s financial control)
City of YarraScope 3
Moreland City CouncilScope 3
Randwick City CouncilScope 3

Under what scope should a council report its street lighting energy use?

Operational control is the most important consideration, but there are others you should be aware of. We have developed the following table which can help you make the right decision.

PreferenceResultant scope for the energy consumption of street lighting
Council deems street lighting to be under its operational controlScope 2
Council deems street lighting to be under the operational control of the network providerScope 3
Council wants to avoid double counting of emissionsScope 3
Council wants to report an NGER-compliant carbon footprint which includes street lighting (noting this may result in double counting)Scope 2
Council has a carbon reduction goal for scope 1 and 2 and is upgrading to LED street lighting Scope 2 (to capture the emissions reduction)
Council has a carbon reduction goal for scope 1, 2 and 3 and is upgrading to LED street lighting Scope 2 or Scope 3, depending on operational control

Example of how you would account for street-lighting

To show the implications of these decisions on how you actually calculate the carbon emissions, we are providing an example which is based on the emissions factor for NSW (July 2018 NGA factors).

Emission sourceScopeEmissions factor in t of CO2-e per MWh
Energy consumption20.82
T&D losses30.10
Total lifecycle emissions2 and 30.92

Based on these emission factors, the following graphic shows two scenarios. Option 1 classifies street lighting as Scope 2, and option 2 classifies it as Scope 3.

Options to account for street lighting in your carbon inventory
Options to account for street lighting in your carbon inventory

Under Option 1, where you classify streetlighting as Scope 2, you would account for the energy consumption of your streetlights as Scope 2, and for the T&D losses as Scope 3.

Under Option 2, where you classify streetlighting as Scope 3, you would account for both the energy consumption and T&D losses under Scope 3.

So under what scope should you report your street-lighting consumption?

First, determine your preferences and reporting needs as per table 2 above. Then adjust your carbon accounting accordingly. Please bear in mind that the carbon accounting software package you might be using may have a fixed Scope classification and may not provide you with a choice.

Carbon accounting can be complex, and it pays to get the help of experts. If you need help, please contact Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.