Category Archives: Energy Efficiency

5 ways of visualising emission reduction pathways

Many of our services involve the development of emission reduction pathways, which greatly enhance climate change action plans. In this blog post, we will show you 5 common ways to visually display such a pathway. Seeing these different illustrations can help you to shape how you would like to present your own organisation’s pathway towards a low carbon future.

Introduction

What are emission reduction pathways?

Emission reduction pathways allow for the easy communication of

  • where your organisation is currently at in terms of greenhouse emissions (or energy consumption)
  • where you can be through the implementation of reduction measures that are feasible and cost-effective over time
  • where you would be in the absence of any measures to reduce emissions

Pathways usually start with your selected baseline year and end at some point in the future, typically at 2030, or when agreed or proposed targets are to be met.

What do emission reduction pathways cover?

Boundary:

Your emissions boundary will typically consider three things:

  • The level of an organisation or region you want to assess in terms of emissions reduction. This could be a single site, an asset class (e.g. community buildings), a Division in an organisation, a whole organisation, a town or community, and up to State and National levels.
  • The emissions and energy sources that you want to evaluate. For example, electricity, natural gas, petrol, diesel, refrigerants, waste, wastewater and so on.
  • The Scopes of emissions you want to include. Typically Scope 2 (electricity) is included, and material Scope 1 emissions (on-site combustion or direct emissions). Selected Scope 3 emissions may also be included, such as upstream emissions associated with energy usage and waste.

Units of measure:

The unit for reductions or savings to be modelled will typically be tonnes of greenhouse gas emissions, or a unit of energy, such as kilowatt-hours or megajoules.

What greenhouse gas reduction measures are considered in abatement pathways?

For most organisations greenhouse gas reduction measures usually relate to six high-level carbon abatement areas as shown in Figure 1 below, being

  • Energy efficiency
  • Management of waste and other Scope 3 emissions sources
  • Sustainable transport
  • Local generation of renewable energy such as rooftop solar PV
  • Grid decarbonisation
  • Buying clean energy and/or carbon offsets

These high-level categories can be further broken down into as many subcategories as relevant within your selected organisation boundary.

Figure 1: 6 categories for carbon reduction opportunities

The need for a graphical representation of emissions pathways

For many people, it is hard to engage with complex data presented in a table or report. In our experience, it is most effective if abatement potential can be shown in a graph. The visual representation of a carbon abatement pathway allows people to better grasp the overall opportunity for abatement, where this will come from, and the timeframes involved.

It also helps organisations to better communicate their plans to their stakeholders, be they internal or external. Simple and well-presented graphics can also help when seeking decisions to budget for and implement cost-effective measures.

5 ways to graphically represent emission reduction pathways

There are many different ways you can display an emissions reduction pathway; some are more suited to specific circumstances than others. The five examples we are using in this blog post are:

  1. Line chart
  2. Waterfall chart
  3. Area chart
  4. Column chart
  5. Marginal Abatement Cost Curve (MACC)

Let’s look at these examples in detail.

Example #1 – line chart

A line chart is a simple but effective way to communicate a ‘Business-as-usual’ or BAU pathway compared with planned or target pathways at a total emissions level for your selected boundary. Such a boundary could be comparing your whole-business projected emissions with and without action to reduce greenhouse gases.

This type of graph is also useful to report on national emissions compared with required pathways to achieve Australia’s Paris commitments, for example.

Figure 2: Example of a line chart

Example #2 – waterfall chart

A waterfall chart focuses on abatement measures. It shows the size of the abatement for each initiative, progressing towards a specific target, such as 100% renewable electricity, for example. It is most useful to highlight the relative impact of different actions, but it does not show the timeline of implementation.

Figure 3: Example of a waterfall chart

Example #3 – area graph

Area graphs show the size of abatement over time and are a great way to visualise your organisation’s potential pathway towards ambitious emissions reduction targets.

They do not explicitly show the cost-effectiveness of measures. However, a useful approach is to include only measures that are cost-effective now and will be in the future, so that decision-makers are clear that they are looking at a viable investment plan over time to lower emissions.

Figure 4: Example of an area chart

Example #4 – column graph

A column graph is similar to the area graph but allows for a clearer comparison between specific years compared with the continuous profile of an area graph. In the example column graph below, we are looking at Scope 1 and Scope 2 emissions, as well as abatement in an organisation over a 25-year timeframe covering past and future plans.

In the historical part, for instance, we can see Scope 1 (yellow) and Scope 2 (blue) emissions in the baseline year. The impact of GreenPower® (green) on emissions can be seen in any subsequent year until 2018.

Going forward we can see in any projection year the mix of grid decarbonisation (red), new abatement measures (aqua) including fuel switching and renewables purchasing, as well as residual Scope 1 and 2 emissions.

Figure 5: Example of a column chart

Example #5 – Marginal Abatement Cost (MAC) Curve

MAC curves focus on the financial business case of abatement measures and the size of the abatement. MAC curves are typically expressed in $/t CO2-e (carbon), or in $/MWh (energy), derived from an assessment of the net present value of a series of investment over time to a fixed time in the future.

The two examples below show MAC curves for the same set of investments across an organisation. Figure 6 shows the outcome in 2030, whereas, in Figure 7, it is to 2040 when investments have yielded greater returns.

MAC curves are a good way to clearly see those investments that will yield the best returns and their contribution to your overall emissions reduction goal.

Figure 6: Example of a Marginal Abatement Cost curve with a short time horizon

Figure 7: Example of a Marginal Abatement Cost curve with a longer time horizon

Please note that no one example is superior over another. It depends on your preferences and what information you would like to convey to your stakeholders.

100% Renewables are experts in putting together emission reduction and renewable energy pathways. If you need help with determining your strategy, targets and cost-effective pathways, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Shrinking your combined load profile [includes video]

In June, Barbara, our Co-CEO, presented at the Renewable Cities Australia conference at the International Convention Centre in Sydney. The topic of her talk was ‘Reaching ambitious energy efficiency and renewables’.

At the core of her speech was a demonstration of how the combined load profile of a typical metropolitan local council changes after the implementation of energy efficiency and onsite renewable energy.

Please note that a video of the ‘shrinking load profile’ is included at the bottom of this post.

What is a load profile?

A load profile shows how your energy demand changes over a 24-hour period, from meter data that your energy retailer can provide on request or via a web portal linked to your account.

Meter data starts and ends at midnight and is usually in half-hour or 15-minute intervals. The vertical axis shows your energy demand in kilowatts as it changes over this time. The less your energy demand, the lower the curve.

A load profile can also be called ‘interval data’ and is a very useful tool for analysing your energy consumption. For example, a load profile can identify equipment that is running unnecessarily at night or may show you spikes in your energy consumption that hint at inefficient operation of equipment. Changes in your profile from summer to spring or autumn can give you an idea of the energy use needed for cooling in a building.

You use load profiles to help you identify how you can be more energy efficient, and they can also help you to size your solar PV installation.

What is a combined load profile?

A combined load profile adds the demand for all your sites to show you the overall energy demand of your organisation. This information is particularly important when you buy energy via a renewable energy Power Purchase Agreement that is supply-linked.

Building up a combined load profile

In this blog post, we build a combined load profile for a metropolitan local government. Figure 1 shows the combined demand of small sites, like small libraries, amenities blocks, community halls and childcare centres.

Energy demand typically rises sharply in the morning as people start to use these facilities, and it falls as people leave them in the evening. At night there is usually demand for appliances, small servers and emergency and exit lights.

Figure 1: The energy demand of small sites

Now, we are adding the electricity demand for large sites on top of the small sites. Examples for large sites are central administration offices & chambers, depots and aquatic centres. Night demand for depots and offices may be low with good after-hours controls. However, pools are usually heated all the time and can be energy-intensive at night.

Figure 2: The energy demand of large sites

The surprising thing for metropolitan councils is that most of the energy demand happens at night, through streetlighting, which runs from dusk until dawn. Streetlights can consume as much as half of a metropolitan council’s electricity! This creates a combined profile with high demand at night and a big dip in demand during the day.

Figure 3: The energy demand of streetlighting

Lastly, we add parks and sporting fields. Most of the energy demand for sporting fields is lighting and irrigation, so naturally, this demand also occurs from late in the evening (sporting field lights) to early morning (irrigation).

Figure 4: The energy demand of parks, ovals and fields

The impact of onsite energy efficiency and renewable energy measures on the combined demand profile

Now that we have a load profile that aggregates energy demand across all sites, let’s implement onsite abatement measures such as energy efficiency and solar PV.

So that you can see the impact of these measures, we are providing a visual cue to show you where our starting line is, because now we start subtracting.

Figure 5: Implementing onsite measures

Energy efficient lighting for parks and sporting fields

LED lighting replacements and smart controls for parks, ovals and fields can lead to a 40-70% reduction in energy demand. At the same time, you may improve your service provision through better lighting, more activated fields and higher utilisation. The net benefit is shown in Figure 6. A reduction in energy demand brings down the whole load profile from the starting point.

Figure 6: Lighting replacement for parks, ovals and fields

Figure 7 shows the impact of a bulk upgrade to LED lighting for local roads. LED streetlights are 60-80% more energy efficient than older technologies such as Compact Fluorescents or Mercury Vapour.

Figure 7: Streetlighting upgrade for local roads

Figure 8 shows the impact of a bulk upgrade to LED lighting for main roads, with similar levels of savings as local roads. Smart controls such as dimming can further increase savings for streetlights.

Figure 8: Streetlighting upgrade for main roads

Implementing energy efficiency improvements to lights, air conditioning, IT systems, appliances, motor systems and building controls at your facilities can achieve at least a 10% reduction, but more might be achievable. It depends on your individual circumstances and what measures you have implemented in the past.

Figure 9: Energy efficiency at Council sites

Installing onsite solar PV

Figure 10 shows the impact of installing onsite solar PV at your sites. You can see the dip in the load profile in the middle of the day, as the solar energy generation reaches its maximum.

Figure 10: Impact on Solar PV

Battery storage will allow further savings in your electricity and peak demand. Figure 11 illustrates how stored solar energy can reduce a building’s peak demand in the afternoon when peak demand charges might apply, thus reducing power bills.

Figure 11: More Solar PV and battery energy storage

What the load profile was and what it could be

So, we have implemented a number of cost-effective efficiency and renewable energy measures, and we can see that demand has reduced significantly. Figure 12 shows what the load profile looked like before implementation of any actions, and what it could be through energy efficiency and onsite solar PV.

Before you think about switching your electricity supply to offsite renewables (e.g. through a Power Purchase Agreement), you should consider the changes behind-the-meter measures like energy efficiency and solar PV can make to your energy demand, and how this can lower the amount of energy you need to buy over time.

Figure 12: Summary of what load profile is and what it could be

Switching your electricity supply to renewables

Figure 13 shows what remains of your original load profile. The next step will be to switch from conventional electricity supply to 100% renewable energy. This can be staged over time or may be possible all in one go.

Figure 13: Offsite opportunities like PPAs

Goals achieved!

In our experience, by implementing onsite energy efficiency and renewable energy measures, you can save 30-40% in electricity demand. By switching your supply to renewables, you can also achieve 100% renewable energy.

Figure 14: Goals Achieved!

You can watch a video of the shrinking load profile here:

Would you like to see how much you could reduce your load profile?

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with analysing your load profile and with developing your renewable energy plan, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Science-based targets in a nutshell

Target-setting in line with science

In 2015, close to 200 of the world’s governments committed to prevent dangerous climate change by limiting global warming to well below 2°C in the landmark Paris Agreement. However, total human-caused carbon emissions continue to increase. Under current trajectories, global mean temperatures are projected to grow by 2.2°C to 4.4°C by the end of this century.

Your organisation has a pivotal role in ensuring that the global temperature goals are met, but most existing company targets are not ambitious enough to achieve this.

What are science-based targets?

Science-based targets (SBT) are greenhouse gas emissions reduction targets that are consistent with the level of decarbonisation that is required to keep global temperature increase within 1.5 to 2°C compared to pre-industrial temperature levels.

SBTs are consistent with the long-term goal of reaching net zero emissions in the second half of this century as per the Paris Agreement. SBTs provide a trajectory for companies to reduce their greenhouse gas (GHG) emissions.

The Science-Based Targets initiative (SBTi)

The SBTi is a collaboration between CDP, the United Nations Global Compact (UNGC), World Resources Institute (WRI), and the World Wide Fund for Nature (WWF). The SBTi enables you to demonstrate your climate change leadership by publicly committing to science-based GHG reduction targets.

The overall aim of the initiative is that by 2020 science-based target setting will become standard business practice and corporations will play a major role in ensuring we keep global warming well below a 2°C increase.

Components for science-based target-setting methods

SBT target-setting methods are complex and should be considered in the context of your operations and value chains. Generally, science-based target-setting methods have three components:

  • Carbon budget (defining the overall amount of greenhouse gases that can be emitted to limit warming to 1.5°C and well-below 2°C),
  • An emissions scenario (defining the magnitude and timing of emissions reductions) and,
  • An allocation approach (defining how the carbon budget is allocated to individual companies).

Target setting approaches

There are three science-based target (SBT) setting approaches. As defined by SBTi:

  1. Sector-based (convergence) approach: The global carbon budget is divided by sector, and then emission reductions are allocated to individual companies based on its sector’s budget.
  2. Absolute-based (contraction) approach: The per cent reduction in absolute emissions required by a given scenario is applied to all companies equally.
  3. Economic-based (contraction) approach: A carbon budget is equated to global GDP, and a company’s share of emissions is determined by its gross profit since the sum of all companies’ gross profits worldwide equate to global GDP.

The SBTi recommends that companies screen available methods and choose the method and target that best drives emissions reductions to demonstrate sector leadership. You should not default to the target that is easiest to meet but should use the most ambitious decarbonisation scenarios and methods that lead to the earliest reductions and the least cumulative emissions.

An SBT should cover a minimum of 5 years and a maximum of 15 years from the date the target is publicly announced. Companies are also encouraged to develop long-term targets (e.g. out to 2050).

It is recommended that you express targets in both intensity and absolute terms, to track both real reductions in emissions and efficiency performance.

More information about the ‘absolute-based target setting’ approach

This method requires you to reduce their absolute emissions by the same percentage as required for a given scenario (e.g. globally or for a sector). Companies setting their SBT today would be strongly encouraged to adopt absolute abatement targets well in excess of 4% per year to be aligned with limiting warming to 1.5°C.

As an alternative to setting percentage reduction targets for Scope 2 emissions (electricity consumption), you can set targets for the procurement of renewable energy. Acceptable procurement targets are:

  • 80% of electricity from renewable sources by 2025, and
  • 100% of electricity from renewable sources by 2030.

If you already source electricity at or above these thresholds, you should maintain or increase your share of renewable electricity.

How to commit to and announce a science-based target

The following steps are required to commit to and announce an SBT.

  1. Commit to set a science-based target (internal)
  2. Develop a target (internal)
  3. Submit your target for validation (to SBTi)
  4. Announce the target (public)

Criteria for SBTs

To ensure their rigour and credibility, SBTs should meet a range of criteria.

  • An SBT should cover a minimum of 5 years and a maximum of 15 years from the date the target is publicly announced. You are also encouraged to develop long-term targets (e.g. up to 2050).
  • The boundaries of your SBT should align with those of your carbon inventory.
  • From October 2019 the emissions reductions from Scope 1 and 2 sources should be aligned with a 1.5°C decarbonisation pathway.
  • SBTs should cover at least 95 per cent of your Scope 1 and 2 emissions.
  • You may set targets that combine scopes (e.g., Scope 1+2 or Scope 1+2+3 targets).
  • The Scope 1 and 2 portion of a combined target can include reductions from both scopes or only from one of the scopes. In the latter case, reductions in one scope have to compensate for the other scope.
  • You should use a single, specified Scope 2 accounting approach (“location-based” or “market-based”) for setting and tracking progress toward an SBT.
  • If you have significant Scope 3 emissions (over 40% of total Scope 1, 2 and 3 emissions), you should set a Scope 3 target.
  • Scope 3 targets generally need not be science-based, but should be ambitious, measurable and clearly demonstrate how you are addressing the main sources of value chain GHG emissions in line with current best practice.
  • The Scope 3 target boundary should include the majority of value chain emissions; for example, the top three emissions source categories or two-thirds of total Scope 3 emissions.
  • The nature of a Scope 3 target will vary depending on the emissions source category concerned, the influence you have over your value chain partners and the quality of data available from your partners.
  • You should periodically update your SBTs to reflect significant changes that would otherwise compromise their relevance and consistency.
  • Offsets and avoided emissions do not count toward SBTs. The SBTi requires that you set targets based on emission reductions through direct action within your own boundaries or your value chains. Offsets are only considered to be an option if you want to contribute to finance additional emission reductions beyond your SBT.

Upcoming changes to submission of SBTs

In October 2018, the Intergovernmental Panel on Climate Change (IPCC) released its Special Report on Global Warming of 1.5 °C (SR15), which was the IPCC’s first major update since its Fifth Assessment Report (AR5) released in 2014.

The new report makes a very strong case about the benefits of limiting warming to 1.5°C and highlights the severe risks and impacts of reaching 2°C of warming. It provides new emissions pathways for limiting warming to 1.5°C and well-below 2°C.

Informed by SR15, in April 2019 SBTi released updated target validation criteria, target validation protocols, technical resources and tools to enable you to set targets in line with the level of decarbonisation needed to achieve the Paris Agreement.

This means that as of October 2019, the SBTi will no longer accept targets in line with 2°C. Existing targets in line with 2°C will continue to be valid and will be labelled as 2°C targets on the SBTi website.

Mandatory target recalculation

To ensure consistency with most recent climate science and best practices, targets must be reviewed, and if necessary, recalculated and revalidated, at a minimum every five years. If you have an approved target that requires recalculation, you must follow the most recently applicable criteria at the time of resubmission.

 

100% Renewables are experts in helping organisations develop their carbon reduction and renewable energy targets and pathways. Developing baselines, projecting your emissions and knowing how you can reach identified targets can be complex. If you need help, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Challenges with achieving ambitious targets

Challenges with ambitious targets
Challenges with ambitious targets

In part 1 of the blog series, we investigated what the scope of your climate change target could be. In part 2, we looked at the global and national goals you should be aware of. In this blog post, we will shed light on some of the challenges that you may face when setting ambitious goals.

Striking a balance

Setting targets is often about striking a balance between what we know can be achieved with today’s commercially available solutions and what will be available in coming years.

This is why many targets for renewable energy, for example, are 100% by 2030. It is expected that battery storage for solar and renewable energy sourcing for energy supply will be readily available and cost-effective by that time.

Interim targets tend to focus on onsite measures that are known to be cost-effective now, such as energy efficiency and solar panels.

Challenges with achieving ambitious targets

In our experience, both interim and ambitious long-term targets can present challenges for you. Here is a list of some of those challenges.

Ongoing internal support, resources and funding

This is often the most common barrier and challenge; how to gain and sustain the support and funds internally to make efficiency and renewable energy initiatives happen. There are usually limited funds, competing priorities and resources are stretched.

Without internal support at senior level as well as people to develop business cases and implement projects, most programs do not last or succeed.

Strategy tips:

  1. One or a few key staff and managers who want to see continued action on renewables and emissions reduction, and make it a priority on an ongoing basis.
  2. Having clear financing strategies for renewables, efficiency and other emissions reduction measures, including awareness of state and federal incentives such as the Energy Saving Scheme and the Renewable Energy Target, a consideration to fund from Capex or a loan, revolving energy funds or similar.
  3. Alignment of renewable energy and emissions reduction plans with your organisation’s strategy so that this is embedded in your organisational priorities.
Download Free Financing Options for Sustainability Projects

Understanding electricity markets and your energy purchasing processes

Energy procurement will most likely deliver the bulk of your organisation’s ambitious renewable energy goals, so without a plan, you may not be able to achieve an ambitious renewable energy goal ahead of the ‘greening’ of the grid.

The ability to meet an ambitious renewable energy goal cost-effectively is heavily influenced by how you source electricity from the market. Whereas in the past, GreenPower® was available, but at a cost premium, many organisations are now able to source energy from renewable energy projects at similar or even lower cost than conventional power.

Strategy tips:

In this rapidly evolving environment, you need to take time to understand how the electricity market and renewables procurement work and develop your energy sourcing strategy accordingly. In particular, investigate the following aspects of energy procurement:

  • The current and future electricity and renewable energy market
  • Contract terms for renewable energy supply
  • Types of contracts for renewable energy purchasing
  • Interest in collaboration or partnering for volume to achieve better pricing are all aspects of energy procurement

Transport and waste

Transport and waste can be sources of large carbon emissions. However, solutions to achieve step-change in energy demand, renewable energy or carbon emissions can be limited, particularly if your organisation is already focusing on emission reduction in these areas.

In our experience, the level of focus on carbon emissions and renewables for these sources is low or lags the focus that is applied to electricity and stationary gas. This often leads to the omission of these sources from targets.

An emerging aspect of this is the potential for electrification of vehicles to change electricity demand and thus increase the amount of renewable electricity that needs to be sourced to meet ambitious targets. Some organisations are beginning to assess their future energy demand with an EV fleet and incorporate this into their long-term forecasts.

Strategy tips:

Consider including transport and waste in future targets if they are not already part of your goal. Make sure that you apply appropriate resources to understand opportunities and future trends.

The emergence of electric vehicles will introduce new challenges for the identification of new opportunities. A good strategy is to forecast what changes will occur and when. This may not be a significant factor for the next 4-5 years but will almost certainly be a more important issue as we approach 2030.

Organisational growth

While you are implementing efficiency and renewables, your energy demand may grow with organisational growth. Your emissions intensity may reduce, but your absolute emissions may still be growing.

Strategy tips:

The greater the level of organisational support and understanding of the nature, scale and timing of opportunities, as well as an understanding of the type and scale of changes that will occur to your assets over time helps to set targets that are realistic and achievable.

You need to take these changes into account so you know what combination of emission reduction options can help you meet your target in the most cost-effective way.

Conclusion

You may find you have only achieved a small part of your goal after a few years, despite the fact you have progressed several onsite solar and energy efficiency projects. Often, building energy efficiency and onsite solar can deliver part of the solution, but each project is individually small.

This is beginning to change with cheaper solar panels making larger-scale systems cost-effective, which in turn has a greater impact on emission reduction and onsite renewable energy generation.

The overall effort towards ambitious goals is likely to include a small number of measures that have individually significant impact (e.g., a renewable energy PPA), plus a large number of small measures that have low impact but are good for the bottom line.

Your strategy to meet ambitious targets should include both these measures.

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with developing a target and action plans that help you meet this target, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

Future policies will affect our carbon emissions – guidance for upcoming federal election

As per the latest IPCC report on climate change, global warming of even 1.5 degrees Celsius can lead to severe consequences, let alone global warming of 2 degrees.

Limiting global warming to 1.5°C will require “rapid and far-reaching” transitions in land, energy, industry, buildings, transport, and cities. Global net human-caused emissions of carbon dioxide will need to fall by about 45% from 2010 levels by 2030, reaching net zero around 2050.

These rapid and far-reaching transitions need to be achieved with the help of individuals, businesses and government.

Australia will elect its leaders in the upcoming May election. Climate change is a decisive factor for many, and so we have summarised the climate change policies of the two major parties.

Australia’s emissions

Before we compare the two parties’ policies on climate change, let’s have a look at Australia’s emission sources first. The single biggest source of our emissions is electricity consumption, followed by transport and agriculture.

Australia’s emissions sources
Figure 1: Australia’s emissions sources

Our commitments under the Paris Agreement

Australia ratified the Paris Agreement on 6 November 2016. Initially, we need to achieve a 26-28% reduction target from 2005 levels by 2030, which is our Nationally Determined Contribution (NDC) under the Paris Agreement.

However, it is expected that over time, action is ratcheted up to reach zero net emissions by 2050. This means that we will need to implement stronger emission reduction targets every five years. The first target update is due in 2020.

Australia’s reduction targets
Figure 2: Australia’s reduction targets

Australia also has a target to achieve 20% renewable energy by 2020 (the actual target is 33,000 GWh, which will likely equate to 23.5% renewables).

Will Australia meet its Paris targets?

Since the repeal of Australia’s carbon price in 2014, our emissions have been increasing and are continuing to do so.

In the following graphic, the green line shows the emission reduction we need to achieve by 2030 – to meet the intent of the Paris Agreement.

The dark line shows Australia’s emission over time, including a projection over time to 2030. Under the current policies, Australia is not on track to meet the objectives of the Paris Agreement.

The blue line shows our agreed Paris target of a 26-28% reduction.

Under Liberal policy, the 26-28% reduction will only be nominal, as left-over carbon credits from the previous Kyoto agreement will be used towards the target. This effectively reduces the actual carbon reduction we need to achieve in our economy under their approach.

Labor wants to increase the target to a 45% reduction, which brings us in line with the intent of the Paris Agreement.

Figure 3: Modified graphic from Investor Group on Climate Change via SMH
Figure 3: Modified graphic from Investor Group on Climate Change via SMH

Comparing key climate change policies of the major parties

Government policy is incredibly important in reaching our Paris goals. Governments need to implement policies that are here for the long run, credible and predictable. We compared the major parties policies on the following key climate change areas:

  • Carbon emissions and meeting our Paris targets
  • Energy efficiency
  • Renewable energy
    • Uptake of solar PV for households and businesses, battery energy storage
  • Transport energy
  • Support for hydrogen energy
  • Support the transition to a clean energy economy

The Australian Conservation Foundation, which is Australia’s national environment organisation, scored the Liberal/National Coalition 4 out of 100 on climate change action, and Labor at 56.

Let’s look at the policies of the two parties in these areas.

pdf-icon“Comparing climate change policies of major political parties”
Download the 3-page report here

100% Renewables are experts in helping organisations develop their renewable energy strategies and timing actions appropriately. If you need help with developing emission scenarios that take into account policy settings, please contact  Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

What you need to know about accounting for LGCs, STCs, ESCs, VEECs, ACCUs

100% RE - Carbon accounting for LGCs STCs ACCUs ESCs etc
100% RE – Carbon accounting for LGCs, STCs, ACCUs, ESCs, etc.

For many sustainability managers, navigating the many acronyms that exist for renewable energy certificates like LGCs and state-based certificate schemes like ESCs for carbon reduction activities can be confusing. Some schemes are federal; others are state-based. Some relate to energy, others to carbon. Some can be used for carbon reduction; others can’t. To make sense of these three and four-letter acronyms, we thought it was time to publish a blog post on this topic.

Renewable Energy Certificates (RECs)

Description

Once electricity from renewable sources enters the grid, it mixes with electrons from multiple sources, like coal-fired power plants, and becomes indistinguishable. To track renewable energy, Renewable Energy Certificates (RECs) are assigned for every megawatt hour created from renewables. Each REC is assigned its own unique number to track the ownership of the environmental (and social) benefits of the renewable energy. They can be traded separately from the underlying electricity.

Renewable Energy Certificates (RECs)
Renewable Energy Certificates (RECs)

Renewable Energy Certificates (RECs) were created to spur the development of renewable energy generation through a market-based mechanism of supply and demand. A REC has a financial value attached to it, which fluctuates depending on prevailing market conditions.

In Australia, RECs are supported by Australia’s Renewable Energy Target, which states that by 2020, 33,000 GWh must be generated from renewable sources (this equates to about 23.5% of the overall total). The scheme ends in 2030.

RECs are divided into Small Scale Technology Certificates (STCs) and Large-Scale Generation Certificates (LGCs).

Treatment

The party that owns the REC owns the claim to that megawatt hour of renewable energy. Renewable energy certificates are used to offset electricity consumption. They cannot be used to offset other emission sources like fuel consumption or Scope 3 emissions like waste or business travel.

Small-scale Technology Certificates (STCs)

Description

STCs are like an upfront subsidy for renewable energy systems that are under 100kW. They are deemed upfront and come with your renewable energy installation.

Treatment

Under previous Australian carbon accounting rules (NCOS Standard) selling the STCs (i.e., claiming the subsidy) meant that you were not allowed to account for the emission reduction. However, under revised NCOS rules, behind-the-meter energy usage originating from small-scale onsite generation systems can now be treated as zero-emissions energy, regardless of whether any STCs have been created, sold or transferred to any other party. This applies to systems installed in the past as well as future installations.

As such, you can add the self-consumption of electricity from your solar PV systems to your total demand for electricity, and this generation is treated as zero-emissions electricity for your carbon footprint. You can also use the generated renewable electricity against your renewable energy target.

Large-scale Generation Certificates (LGCs) from onsite renewable energy generation

Description

If your renewable energy system is larger than 100kW, you are eligible for one LGC for every megawatt hour your solar PV system generates. As opposed to STCs, the LGCs are not deemed upfront. You need to keep track of your renewable energy generation on an annual basis to be able to create and then sell LGCs. While LGCs currently have a much higher market value than STCs, this can change in line with the supply and demand for certificates by liable entities (like electricity retailers).

Treatment

If you sell the LGCs, you will generate income. However, if you sell your LGCs, the carbon reduction and renewable energy generation associated with the energy generated cannot be claimed.

According to the NCOS Standard, behind-the-meter energy usage originating from large-scale onsite generation systems that have created LGCs can be treated as zero-emissions energy only if the equivalent amount of LGCs are voluntarily retired. Behind-the-meter energy usage that is not matched by an equivalent amount of voluntarily retired LGCs must be accounted for in the same way as grid-based energy, and offset accordingly if a carbon neutral strategy is pursued.

Large-scale Generation Certificates (LGCs) from offsite renewable energy generation

Description

Rather than having a system onsite, you can purchase LGCs from a renewable energy project that is grid-connected, or offsite. There are principally two options to purchase offsite LGCs – either through a Power Purchase Agreement (PPA) or through a broker.

Treatment

Large-scale Generation Certificates (LGCs) are treated the same as the purchase of GreenPower® provided the certificates are retired. If you have entered into a PPA without obtaining and retiring the LGCs (purchasing the black portion only), then you cannot claim the emissions reduction/renewable energy attributes from the project.

 

A note on surplus electricity

The treatment of surplus electricity from renewable energy and batteries from the perspective of renewable energy and carbon abatement claims is complex. You can read more about this topic in our blog post at  https://100percentrenewables.com.au/how-to-account-for-exported-solar-electricity/.

GreenPower®

Description

The GreenPower® program is an independent government accreditation scheme and is recognised as the most highly regarded standard for offsite renewables in Australia. GreenPower® purchases are additional to Australia’s Renewable Energy Target, and an extensive two-tier auditing process ensures that no double counting can occur. To purchase GreenPower®, you can approach your electricity retailer, buy from an independent provider, decoupled from your electricity agreement or through a GreenPower® PPA.

Treatment

The purchase of GreenPower® is considered to be equivalent to the direct use of renewable energy. This means that you can claim the emissions reduction associated with this action. You can also use purchased GreenPower® towards your renewable energy claims.

Australian Carbon Credit Units (ACCUs)

Description

The Emission Reduction Fund (ERF) is a voluntary scheme that provides incentives for organisations and individuals to adopt new practices and technologies to reduce their emissions. Participants can earn ACCUs for emissions reductions. The ACCUs can be sold to the Commonwealth under a carbon abatement contract with the Clean Energy Regulator, or they can be sold on the voluntary market and are eligible as offset units under the National Carbon Offset Standard.

Treatment

If you generate ACCUs from emissions reduction projects occurring within your boundary, you can claim the reduction as part of your carbon account only if the ACCUs from your projects are voluntarily retired. If the ACCUs are not retired, you are required to account for your emissions without the reductions associated with the projects (i.e. as though the projects had never occurred).

Carbon offsets

Description

One carbon offset represents one tonne of carbon emissions that are not released into the atmosphere, that occur as a result of a discrete project. The emissions reductions from a particular carbon offset project can be sold to enable the purchaser to claim those carbon reductions as their own. Renewable energy is one type of offset activity, but there are many others like energy efficiency or forestry projects.

Treatment

Carbon offsets can be used to offset any emission source, including ones that are not electricity related. You cannot use carbon offset for any renewable energy claims.

State-based white certificate schemes

Description

Several jurisdictions have energy efficiency schemes that require energy retailers to achieve energy efficiency in their customer portfolio. The NSW Energy Savings Scheme and the Victorian Energy Efficiency Target Scheme are the biggest in terms of number of certificates. The ACT and South Australia operate similar, but smaller schemes mainly targeting households and small business.

Energy Savings Certificates (ESCs) – New South Wales only

ESCs created under the Energy Savings Scheme (ESS) reward energy-saving projects through a financial value on every tonne of carbon that is abated by an organisation. The objective of the scheme is to reward companies that undertake projects that either reduce electricity consumption or improve the efficiency of energy use. The ESS began on the 1st July 2009 and is part of the NSW Government’s plan to cut greenhouse gas emissions. The scheme is legislated to run until 2025 or until there is an equivalent national energy efficiency scheme.

Victorian Energy Efficiency Certificates (VEECs) -Victoria only

The VEET scheme was established under the Victorian Energy Efficiency Target Act 2007 and commenced on 1 January 2009. Each VEEC represents one tonne of carbon dioxide equivalent (CO2-e) abated by specified energy saving activities known as prescribed activities. The abatement is calculated by comparing the difference between the energy use after the completion of an upgrade or project and the ‘baseline’ energy use, which refers to the amount of energy that would have been used if the energy efficient installation/project had not taken place. VEECs are bought by large energy retailers with a liability under the scheme.

Treatment of white certificate schemes

You are not required to account for state or territory-based energy efficiency schemes. Emissions reductions resulting from activities supported by these schemes can be counted towards your carbon account regardless of whether any associated certificates have been created, sold or transferred to any other party. So, in short, you can claim the ESCs/VEECs/other white certificates and the carbon reduction.

 

Carbon accounting for all these different federal and state schemes can be confusing, as may be accounting for your Scope 3 emissions. If you need an expert to help you with putting your carbon inventory together, please contact Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog. 

Are ‘carbon neutral’ and ‘100% renewable’ the same?

It is not always clear what the targets carbon neutrality and 100% renewable energy mean. In this blog, we will define these targets and talk about the difference between your energy and carbon footprint. In one of our next blog posts, we will look at allowable offset mechanisms like RECs/LGCs and carbon offsets.

The difference between your energy and carbon footprint

Your energy footprint relates to your business’ energy consumption. For most organisations, ‘energy’ encompasses not only electricity but also stationary energy and transport fuels. Examples of stationary fuels are natural gas, diesel for generators, and LPG for forklifts. Examples of transport fuels include diesel, petrol, and LPG that power your fleet.

A carbon footprint is the sum of your emission sources, a big part of which is your energy consumption. You can develop a narrow carbon footprint of emissions that happen at your place of business (Scope 1) and the emissions associated with electricity consumption (Scope 2). Alternatively, you can develop a wide carbon footprint which also includes emissions in your supply chain (Scope 3).

A carbon footprint is usually broader than your energy footprint. You can see in Figure 1 that an energy footprint is a subset of a carbon footprint. From a carbon accounting perspective, your energy footprint relates to your Scope 2 emissions and to some of your Scope 1 emissions.

The difference between your energy footprint and carbon footprint and claims for 100% renewable energy and carbon neutrality
Figure 1: The difference between your energy footprint and carbon footprint and claims for 100% renewable energy and carbon neutrality

What is carbon neutrality?

Carbon neutrality (or zero net emissions) is reached when all emission sources in your defined boundary are zero. This is demonstrated in Figure 1 in the bottom line. Ideally, your defined carbon footprint boundary encompasses as many emission sources as possible so that your claim for carbon neutrality is credible.

You can reach carbon neutrality by:

  1. Reducing your emissions onsite through energy efficiency or by installing solar PV
  2. Building or purchasing renewables offsite, and by
  3. Offsetting the rest of your emissions through the purchase of carbon offsets

For further information on these three categories, you can read our blogs on the carbon management hierarchy, compare the value of onsite and offsite solar, and installing solar via onsite PPAs.

What is 100% renewable energy?

You are 100% renewable when the amount of renewable energy produced is equal to or more than what is consumed. In most cases, people associate only electricity with ‘100% renewable’. However, as you can see in Figure 1 ‘energy’ can encompass stationary and transport fuels as well. So, to be truly 100% renewable, you would have to include these fuels. While it is relatively straightforward to reach 100% renewable electricity, it is more difficult to achieve 100% renewable energy for stationary and transport fuels.

To avoid doubt if your real objective is to green your electricity supply, you can define your target to be ‘100% renewable electricity’. You can reach this goal by:

  1. Implementing onsite solar PV
  2. Building your own mid-scale solar farm or solar/wind farm in partnership with others
  3. Buying renewables (e.g., through a corporate Power Purchase Agreement)

For further information, you can read our Guide on ‘How to achieve 100% renewable energy’ or buy Barbara’s book ‘Energy Unlimited – Four Steps to 100% Renewable Energy’. Signed copies can be purchased here, and the ebook version is available from reputable bookstores.

Conclusion

Carbon neutrality and 100% renewable energy are two different targets. It is easier to reach ‘carbon neutrality’ than to reach ‘100% renewable energy’, especially if the boundary for energy encompasses both electricity, natural gas and transport fuels. However, to be a leader in climate change, your organisation should also strive towards a renewable energy target as your impact will be much greater.

It is possible to reach 100% renewable energy AND carbon neutrality. Microsoft has been achieving both since 2014. You can also pursue both targets in a staged approach. As an example, you could aim for 100% renewable electricity in the first instance, followed by carbon neutrality in the medium term, followed by 100% renewable energy in the long run.

If you have specific questions about defining a target that works for your organisation, or if you would like us to develop a pathway to your sustainability goal, please have a chat with Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.”

Financing options for sustainability projects for councils

Barbara Albert from 100% Renewables presenting on financing options for sustainability projects for councils
Barbara Albert from 100% Renewables presenting on financing options for sustainability projects for councils

Last week, 100% Renewables was asked to present at a webinar run by the Sustainability Advantage Program from the Office of Environment and Heritage about financing options for councils. Topics covered were why you need a funding strategy, how to align it with broader organisational strategies and plans, a detailed discussion about various funding options, how a financing strategy can be integrated into organisational planning and developing an optimal financing strategy.

Why you need a financing strategy for sustainability projects

Most sustainability initiatives require some sort of financing, and it pays to plan ahead so that you can seamlessly execute your environmental strategy and reach your stated targets. Knowing beforehand what your needs will be will also make sure that you are ready to submit your business cases in line with budgetary cycles.

Free Download: Financing Options for Sustainability Projects

Aligning your financing strategy

A funding strategy for local governments is not a standalone document – it needs to tie into broader strategies like the Community Strategic Plan, delivery and operational plans, as well as the sustainability strategy. Figure 1 shows the hierarchy of organisational alignment.

Aligning a local government's financing strategy with strategic and operational plans
Aligning a local government’s financing strategy with strategic and operational plans

11 funding options for local governments

Traditionally, local governments have funded their sustainability initiatives either from the budget or through a loan. However, there are many more options available. In the webinar, Barbara covered 11 funding options for councils, along with pros and cons for each option, as well as an indication of the challenge to establish and maintain them and a few case studies. You can find the 11 financing options in the list below.

  1. Pre-existing and future incentives and grants, free money
  2. Environmental levy/Special Rate Variation, internal funding
  3. Self-financed through the normal budgeting process, internal funding
  4. Self-financed through a Revolving Energy Fund (REF), internal funding
  5. Internal carbon price, internal funding
  6. Loan financed, Council borrows
  7. Equipment lease, third-party funding
  8. On-bill financing, third-party funding
  9. Onsite solar Power Purchase Agreements, third-party funding
  10. Energy Performance Contracts, third-party funding
  11. Community energy projects, third-party funding

It’s important that you keep in mind that these funding options are not mutually exclusive and that your funding strategy will most likely contain a mix of these.

What are the most suitable financing options for your council?

Every council’s needs, circumstances and objective are different, so a financing strategy needs input from senior management to make sure that it is fit for purpose. Here are two ideas for how you could filter out suitable financing options from the list above.

  1. Run a workshop with the leadership team and other key organisational stakeholders in which you go through all financing options and let the group determine the most suitable ones.
  2. Present a shortlist of pre-evaluated financing options to the leadership team so that they can provide feedback.

Both options lead to the development of a pathway for implementing your optimal financing strategy.

Defining your optimal financing strategy for your sustainability projects

In most cases, your optimal financing strategy is based around four different ways detailed in Figure 2. The best money is always free money, which you can access through grants and incentives. Grants are only available at certain times, and it is best to have projects shovel-ready, so you can submit when the time comes.

Incentives like Small-Scale Technology Certificates (STCs), Large-Scale Generation Certificates (LGCs) and Energy Savings Certificates in NSW (ESCs) will make the business case of investments more attractive, as there will be additional income streams for your energy projects.

Optimal financing strategy for sustainability projects for local governments
Figure 2: Optimal financing strategy for sustainability projects for local governments

The second-best option for councils from a financial-return-perspective is to finance projects internally. If you spend money from your funds (e.g., General, Water/Sewer, or Streetlighting Funds), you will be able to enjoy all energy project savings, without having to pay interest or sharing the benefits with another party.

The third-best option is to borrow money, which is typically done for capital-intensive projects. Councils have access to very favourable interest rates, but the Clean Energy Finance Corporation (CEFC) might also be able to co-fund your project, so it is worthwhile enquiring with them.

If you don’t want ownership of your energy project and you are happy to split the financial benefits with another party, you can also consider third-party financing through solutions like leasing, onsite solar PPAs, community energy projects or Energy Performance Contracts (EPCs).

Download Free Financing Options for Sustainability Projects

If you need help with a financing strategy for your sustainability plan and you want to run your ideas past our energy experts, why not contact Barbara or Patrick for an informal chat.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.”

Does the typical carbon management hierarchy apply to your business?

Clients sometimes ask us in what order they should deliver carbon reduction actions, often in the context of their carbon neutral/zero net emissions goal. Ordinarily, we suggest the ‘typical’ carbon management hierarchy such as that shown in Figure 1.

Typical carbon management hierarchy
Figure 1: Typical carbon management hierarchy

Typical carbon management hierarchy

The typical hierarchy suggests that a priority order of implementation should include:

  1. Energy efficiency: referred to as the ‘first fuel’, more efficient technologies, controls and practices helps to ensure that the least amount of energy is consumed before other measures are considered.
  2. Onsite solar PV: use of available roof space to implement solar PV to offset grid electricity consumption which is mainly produced from fossil fuels. Battery storage will enable solar PV systems to be expanded to offset a higher percent of onsite power demand in future.
  3. Offsite renewables: Power Purchase Agreements are becoming increasingly popular, particularly by large corporations and groups of organisations with similar aspirations and procurement processes. Some organisations have their own land and are interested in building their own solar farm to meet some or all of their energy needs.
  4. Carbon offsets: generally seen as the last step in a carbon management strategy, offsets are often purchased after all other ways to reduce carbon emissions have been exhausted.

Every organisation has unique needs

However, while this approach is ‘ideal’, every business’ situation is different, and this approach may not represent the best strategy for everyone. For example:

  • Energy using technologies may be capital intensive or new energy efficiency opportunities may be limited.
  • Onsite solar and batteries may be able to meet all of the energy demands of a warehouse operation for example. However old roofs, heritage buildings, multi-storey and energy-intensive facilities might have very limited PV capacity, or PV may only meet a small percent of energy demand.
  • Onsite solar PV may actually be cheaper and deliver a better return on investment compared with many efficiency measures.
  • Purchasing renewables via a PPA is becoming increasingly cheaper, particularly for large energy users. This may be a better option than many efficiency or onsite solar opportunities as it can achieve emissions reduction at scale that other options cannot, and at similar or lower cost to ‘standard’ grid power.
  • A business may have considerable Scope 3 carbon emissions that it has low ability to influence other than to purchase offsets; for example, flights, employee commute or catering expenses.

A business should tackle ambitious goals such as carbon neutrality with a multi-pronged approach that evaluates all of the abatement options and prioritises them based on what they can contribute to the end goal. The optimum carbon management hierarchy for each business may be different.

Individual carbon management hierarchy
Figure 2: Individual carbon management hierarchy for a client in a large heritage building

For example, a recent plan developed for a client in a large heritage building showed that their net zero goal can best be met through a PPA for renewable energy, followed by offset purchasing. Efficiency and onsite solar PV make only a small contribution in their case. This is shown in Figure 2.

Represented in this way makes it easier to communicate what is most to least important in the context of achieving ambitious carbon goals.

If you are interested to find out where your biggest savings are, both in monetary and carbon reduction terms, please contact Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.

How USC developed their Carbon Management plan

Barbara was the main speaker at a TEFMA webinar focusing on the development of USC's Carbon Management Plan
Barbara Albert from 100% Renewables presenting at a webinar to TEFMA

This week, Barbara presented at a webinar run by TEFMA to Universities around Australia and New Zealand. The topic of the presentation was the Carbon Management Plan for the University of the Sunshine Coast (USC) developed with the University by 100% Renewables.

USC to become a carbon-neutral university

USC has a long track record of sustainability since its inception when several awards were received for design at its Sippy Downs campus. USC’s sustainability program encompasses the natural environment at the university, energy and water efficiency in design and operation, waste management, supply chain emissions, transport as well as a wide range of education and engagement activities for staff and students. Strong governance has seen the sustainability program thrive over several years.

Building on this track record, USC’s strategic plan commits that the ‘University will strengthen leadership in sustainability for the region and beyond’. One of the main initiatives to arise from this commitment was that USC should aim to be carbon neutral and should plan for this accordingly.

USC’s approach to developing a Carbon Management Plan (CMP)

A key priority for the CMP is that it be cost-effective through a program of actions over time that are similar in cost to or lower than the cost of not acting to reduce emissions. Initiatives that can drive this outcome were informed by a planned, systematic approach:

  • Carbon emissions data were analysed for all USC operations, and forecasts of future emissions developed based on known changes in facilities and expected growth in student numbers,
  • Extensive analysis of onsite energy efficiency and renewable energy opportunities was carried out,
  • A market-led proposal to develop a central thermal energy storage system and a large-scale onsite solar PV and storage project at the Sippy Downs campus was developed

The central element of the CMP development was the engagement with USC’s stakeholders, to present USC’s emissions forecasts, options for abatement, potential targets to aim for, and frameworks against which to measure and report on emissions. Workshops were held with key stakeholders from the USC executive, staff and student body to ensure a wide range of views and ideas were heard and considered.

USC’s recommended targets

The CMP development served to refine USC’s carbon neutral objective:

  • Carbon neutrality should be aligned to the National Carbon Offset Standard (NCOS)
  • Carbon neutrality should be achieved by 2025
  • A focus on in-house measures and renewable energy procurement is strongly preferred, with offsets purchased as a last step
  • USC should aim to make the Moreton campus carbon neutral from the beginning

The Carbon Management Plan (CMP)

The CMP will be underpinned by a robust emissions measurement methodology aligned with NCOS. This will develop over time as data management systems for small sites and some Scope 3 emissions are improved. The proposed data management approach is illustrated in Figure 1 below.

Figure 1: Staged inclusion for emission sources
Figure 1: Staged inclusion for emission sources

Initiatives to be implemented under the CMP were developed based on estimated future emissions for an extensive Scope 3 boundary for all campuses.

The CMP is divided into three themes:

  1. Management – management and governance of the CMP
  2. Carbon abatement – carbon reduction measures that form part of the journey to carbon neutrality
  3. Engagement – ensuring that both students and staff are engaged so that the actions of the CMP are supported

Based on assessed and recommended investments, marginal abatement cost (MAC) curves were developed to illustrate the cost-effectiveness of the planned CMP over time. Figure 2 below illustrates the MAC for the university’s plan at 2040, when most of the investments have paid for themselves and are returning a positive cashflow to USC.

Figure 2: Marginal Abatement Cost Curve for USC at 2040
Figure 2: Marginal Abatement Cost Curve for USC at 2040

The MAC curves illustrate that there are several highly cost-effective abatement measures that will pay for themselves within a few years. They also show that investment in rooftop solar – even at significant scale – is cheaper than offsetting emissions. The overall outcome in cost terms to USC will be cash positive.

If you would like to find out more about USC’s journey, please download our presentation here:

100% Renewables can help you with the development of your carbon management or carbon neutral strategy. For more information, please contact Barbara or Patrick.

Feel free to use an excerpt of this blog on your own site, newsletter, blog, etc. Just send us a copy or link and include the following text at the end of the excerpt: “This content is reprinted from 100% Renewables Pty Ltd’s blog.